Skip to main content
Log in

Homogeneous spaces of curvature bounded below

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We prove that every locally connected quotient G/H of a locally compact, connected, first countable topological group G by a compact subgroup H admits a G-invariant inner metric with curvature bounded below. Every locally compact homogeneous space of curvature bounded below is isometric to such a space. These metric spaces generalize the notion of Riemannian homogeneous space to infinite dimensional groups and quotients which are never (even infinite dimensional) manifolds. We study the geometry of these spaces, in particular of non-negatively curved homogeneous spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandrov, A.D. Über eine Verallgemeinerung der Riemannschen Geometrie,Schr. Forschungsinst. Math.,1, 33–48, (1957).

    MathSciNet  Google Scholar 

  2. Aloff, S. and Wallach, N. An infinite family of distinct 7-manifolds admitting positively curved Riemannian structures,Bull. Am. Math. Soc.,81, 93–97, (1975).

    Article  MathSciNet  MATH  Google Scholar 

  3. Berard-Bergery, L. Les variètès riemanniennes homogenès simplement connex de dimension impaire à courbure strictement positive,J. Math. Pures Appl.,55, 47–67, (1976).

    MathSciNet  MATH  Google Scholar 

  4. Berestovskii, V.N. Homogeneous Busemann G-spaces,Siberian Math. J.,23, (1982).

  5. Berestovskii, V.N. Spaces with bounded curvature and distance geometry,Siberian Math. J.,27, 8–19, (1986).

    Article  MathSciNet  Google Scholar 

  6. Berestovskii, V.N. Homogeneous spaces with intrinsic metric,Soviet Math. Dokl.,27, 60–63, (1989).

    MathSciNet  Google Scholar 

  7. Berestovskii, V.N. Homogeneous manifolds with intrinsic metric II,Siberian Math. J.,30, (1989).

  8. Berestovskii, V.N. On the structure of locally compact spaces with intrinsic metrics,Siberian Math. J.,30, (1989).

  9. Berestovskii, V.N.Homogenous Spaces with Intrinsic Metrics, Dr. Sci. dissertation, Inst. Mat. Sib. Otdel. Akad. Nauk SSSR, Novosibirsk, 1990.

    Google Scholar 

  10. Berestovskii, V.N. and Plaut, C. Metric geometry of locally compact groups and quotients, preprint, 1994.

  11. Berger, M. Les variétés riemanniennes homogenès normales simplement connexes à courbure strictement positive,Ann. Scuola Norm. Sup. Pisa,15, 179–246, (1961).

    MathSciNet  MATH  Google Scholar 

  12. Busemann, H.The Geometry of Geodesics, Academic Press, New York, 1955.

    MATH  Google Scholar 

  13. Burago, Yu., Gromov, M., and Perelman, G. A. D. Alexandrov spaces with curvatures bounded below,Uspekhi Mat. Nauk,248, 3–51, (1992).Transl. Russian Math. Surveys,47, 1–58, (1992).

    MathSciNet  Google Scholar 

  14. Chevalley, C.Theory of Lie Groups, Princeton University Press, Princeton, NJ, 1946.

    MATH  Google Scholar 

  15. Fukaya, K. and Yamaguchi, T. Isometry groups of singular spaces,Math. Z,216, 31–44, (1994).

    Article  MathSciNet  MATH  Google Scholar 

  16. Glushkov, V.N. The structure of locally compact groups and Hilbert’s Fifth Problem,AMS Translations,15, 55–94, (1960).

    MATH  Google Scholar 

  17. Gromov, M., Lafontaine, F., and Pansu, P.Structures Métriques Pour les Variétés Riemannienes, Cedic, Paris, 1981.

    Google Scholar 

  18. Grove, K. and Petersen, P.Manifolds near the boundary of existence,J. Diff. Geo.,33, 379–394, (1991).

    MathSciNet  MATH  Google Scholar 

  19. Grove, K. and Petersen, P. On the excess of metric spaces and manifolds, preprint.

  20. Iwasawa, K. On some types of topological groups,Ann. Math.,50, 507–558, (1949).

    Article  MathSciNet  Google Scholar 

  21. Kobayashi, S. and Nomizu, K.,Foundations of Differential Geometry II, John Wiley & Sons, New York, 1969.

    MATH  Google Scholar 

  22. Kowalski, O. and Vanhecke, L. Riemannian manifolds with homogeneous geodesics,Boll. Un. Mat. Ital.,5, 189–246, (1991).

    MathSciNet  MATH  Google Scholar 

  23. Milnor, J. Curvatures of left invariant metrics on Lie groups,Adv. Math.,21, 293–329, (1976).

    Article  MathSciNet  MATH  Google Scholar 

  24. Montgomery, D. and Zippin, L.Topological Transformation Groups, Wiley Interscience, New York, 1955.

    MATH  Google Scholar 

  25. Plaut, C. Almost Riemannian spaces,J. Diff. Geom.,34, 515–537, (1991).

    MathSciNet  MATH  Google Scholar 

  26. Plaut, C. Spaces of Wald-Berestovskii curvature bounded below,J. Geom. Anal.,6, 113–134, (1996).

    MathSciNet  MATH  Google Scholar 

  27. Plaut, C. Geometrizing locally compact infinite dimensional groups,Trans. Am. Math. Soc.,348, 941–962, (1996).

    Article  MathSciNet  MATH  Google Scholar 

  28. Pontryagin, L.S.Topological Groups, Gordon and Breach, New York, 1966.

    Google Scholar 

  29. Toponogov, V.A. Riemannian spaces of curvature bounded below,Usp. Mat. Nauk.,14, 87–130, (1959).

    MathSciNet  MATH  Google Scholar 

  30. Wallach, N. Compact homogeneous Riemannian manifolds with strictly positive curvature,Ann. Math.,96, 277–295, (1972).

    Article  MathSciNet  Google Scholar 

  31. Ziller, W. Homogeneous Einstein metrics on spheres and projecive spaces,Math. Ann.,259, 351–358, (1982).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valera Berestovskii.

Additional information

Dedicated to the memory of A. D. Alexandrov

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berestovskii, V., Plaut, C. Homogeneous spaces of curvature bounded below. J Geom Anal 9, 203–219 (1999). https://doi.org/10.1007/BF02921936

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02921936

Math Subject Classifications

Key Words and Phrases

Navigation