Skip to main content
Log in

Microbial detection and monitoring in advanced life support systems like the International Space Station

  • Published:
Microgravity - Science and Technology Aims and scope Submit manuscript

Abstract

Potentially pathogenic microbes and so-called technophiles may form a serious threat in advanced life support systems, such as the International Space Station (ISS). They not only pose a threat to the health of the crew, but also to the technical equipment and materials of the space station. The development of fast and easy to use molecular detection and quantification methods for application in manned spacecraft is therefore desirable and may also be valuable for applications on Earth. In this paper we present the preliminary results of the SAMPLE experiment in which we performed molecular microbial analysis on environmental samples of the ISS as part of an ESA-MAP project.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pierson D. L.: Microbial contamination of spacecraft. Gravit. Space Biol. Bull. vol. 14, pp. 1–6 (2001).

    MathSciNet  Google Scholar 

  2. Castro V. A., Thrasher A. N., Healy M., Ott C. M., Pierson D. L.: Microbial characterization during the early habitation of the International Space Station. Microb. Ecol. vol. 47, pp. 119–126 (2004).

    Article  Google Scholar 

  3. Novikova N. D.: Review of the knowledge of microbial contamination of the Russian manned spacecraft. Microb. Ecol. vol. 47, pp. 127–132 (2004).

    Article  Google Scholar 

  4. Ciferri O., Tiboni O., Di Pasquale G., Orlandoni A. M., Marchesi M. L.: Effects of microgravity on genetic recombination in Escherichia coli. Naturwissenschaften vol. 73, pp. 418–421 (1986).

    Article  Google Scholar 

  5. Klaus D., Simske S., Todd P., Stodieck L.: Investigation of space flight effects onEscherichia coli and a proposed model of underlying physical mechanisms. Microbiology vol. 143, pp. 449–455 (1997).

    Article  Google Scholar 

  6. Mennigmann H. D., Lange M.: Growth and differentiation of Bacillus subtilis under microgravity. Naturwissenschaften vol. 73, pp. 415–417 (1986).

    Article  Google Scholar 

  7. Nickerson C. A., Ott C. M., Wilson J. W., Rantamurthy R., Pierson D. L.: Microbial responses to microgravity and other low-shear environments. Microbiol. Mol. Biol. Rev. vol. 68, pp. 345–361 (2004).

    Article  Google Scholar 

  8. Tixador R., Gasset G., Eche B. et al.: Behavior of bacteria and antibiotics under space conditions. Aviat. Space Environ. Med. vol. 65, pp. 551–556 (1994).

    Google Scholar 

  9. Holdeman L. V., Good I. J., Moore W. E.: Human fecal flora: variation in bacterial composition within individuals and a possible effect of emotional stress. Appl. Environ. Microbiol. vol. 31, pp. 359–375 (1976).

    Google Scholar 

  10. Kaur I., Simons E. R., Castro V. A., Mark Ott C., Pierson D. L.: Changes in neutrophil functions in astronauts. Brain Behav. Immun. vol. 18, pp. 443–450 (2004).

    Article  Google Scholar 

  11. Kaur I., Simons E. R., Castro V. A., Ott C. M., Pierson D. L.: Changes in monocyte functions of astronauts. Brain Behav. Immun. vol. 19, pp. 547–554 (2005).

    Article  Google Scholar 

  12. Giulietti A., Overbergh L., Valckx D., Decallonne B., Bouillon R., Mathieu C.: An overview of real-time quantitative PCR: applications to quantify cytokine gene expression. Methods vol. 25, pp. 386–401 (2001).

    Article  Google Scholar 

  13. Amann R. L., Ludwig W., Schleifer K. H.: Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. vol. 59, pp. 143–169 (1995).

    Google Scholar 

  14. Harmsen H. J. M., Raangs G. C., He T., Degener J. E., Welling G. W.: Extensive set of 16S rRNA-based probes for detection of bacteria in human feces. Appl. Environ. Microbiol. vol. 68, pp. 2982–2990 (2002).

    Article  Google Scholar 

  15. Ludwig, W., Schleifer, K. H.: How quantitative is quantitative PCR with respect to cell counts? Syst. Appl. Microbiol. vol. 23, pp. 556–562 (2000).

    Google Scholar 

  16. Reischl, U., Linde, H. J., Metz, M., Leppmeier, B., Lehn, N.: Rapid identification of methicillin-resistantStaphylococcus aureus and simultaneous species confirmation using real-time fluorescence PCR. J. Clin. Microbiol. vol. 38, pp. 2429–2433 (2000).

    Google Scholar 

  17. Brakstad, O. G., Aasbakk, K., Maeland, J. A.: Detection ofStaphylococcus aureus by polymerase chain reaction amplification of thenuc gene. J. Clin. Microbiol. vol. 30, pp. 1654–1660 (1992).

    Google Scholar 

  18. Brasher C. W., De Paola, A., Jones, D. D., Bej, A. K.: Detection of microbial pathogens in shellfish with multiplex PCR. Curr. Microbiol. vol. 37, pp. 101–107 (1998).

    Article  Google Scholar 

  19. Ballard, A. L., Fry, N. K., Chan, L., Surman, S. B., Lee, J. V., Harrison T. G., Towner, K. J.: Detection ofLegionella pneumophila using a Real-Time PCR hybridization assay. J. Clin. Microbiol. vol. 38, pp. 4215–4218 (2000).

    Google Scholar 

  20. Eishi, Y., Suga, M., Ishige, I., Kobayashi, D., Yamada, T., Takemura, T., Takizawa, T., Koike, M., Kudoh, S., Costabel, U., Guzman, J., Rizzato, G., Gambacorta, M., du Bois, R., Nicholson, A. G., Sharma, O. P., Ando, M.: Quantitative analysis of mycobacterial and propionibacterial DNA in lymph nodes of Japanese and European patients with sarcoidosis. J. Clin. Microb. vol. 40, pp. 198–204 (2002).

    Article  Google Scholar 

  21. Costa, C., Vidaud, D., Olivi, M., Bart-Delabesse, E., Vidaud, M., Bretagne, S.: Development of two real-time quantitative Taqman PCR assays to detect circulatingAspergillus fumigatus DNA in serum. J. Microbiol. Methods, vol. 44, pp. 263–269 (2001).

    Article  Google Scholar 

  22. De Vos, D., Lim, A. Jr.,Pirnay, J.-P., Struelens, M., Vandenvelde, C., Duinslaeger, L., Vanderkelen, A., Cornelis, P.: Direct detection and identification ofPseudomonas aeruginosa in clinical samples such as skin biopsy specimens and expectorations by multiplex PCR based on two outer membrane lipoprotein genes, oprl and oprl. J. Clin. Microbiol. vol. 35, pp. 1295–1299 (1997).

    Google Scholar 

  23. Nadkarni, M. A., Martin, F. E., Jacques, N. A., Hunter, N.: Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology, vol. 148, pp. 257–266 (2002).

    Google Scholar 

  24. Lindsley, M. D., Hurst S. F., Iqbal, N. J., Morrison, C. J.: Rapid identification of dimorphic and yeast-like fungal pathogens using specific DNA probes. J. Clin. Microbiol. vol. 39, pp. 3505–3511 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra P. van Tongeren.

Additional information

This article is a reprint of Microgravity sci. technol. XVIII-3/4 (2006). Tab. 1 has been corrected.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Tongeren, S.P., Krooneman, J., Raangs, G.C. et al. Microbial detection and monitoring in advanced life support systems like the International Space Station. Microgravity sci. Technol. 19, 45–48 (2007). https://doi.org/10.1007/BF02911866

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02911866

Keywords

Navigation