Skip to main content
Log in

Investigating the potential for interaction between the components of PM10

  • Review Article
  • Published:
Environmental Health and Preventive Medicine Aims and scope

Abstract

The adverse health effects of elevated exposures to PM10 (particulate matter collected through a size selective inlet with an efficiency of 50% for particles with an aerodynamic diameter of 10 μm) in relation to morbidity and mortality, especially in susceptible individuals, are now well recognised. PM10 consists of a variable cocktail of components differing in chemical composition and size. Epidemiological and toxicological data suggest that transition metals and ultrafine particles are both able to drive the cellular and molecular changes that underlie PM10-induced inflammation and so worsen disease status. Toxicological evidence also suggest roles for the biological components of PM10 including volatile organic compounds (VOC's), allergens and bacterial-derived endotoxin. Many of these components, in particular transition metals, ultrafine particles, endotoxin and VOC's induce a cellular oxidative stress which initiates an intracellular signaling cascade involving the activation of phosphatase and kinase enzymes as well as transcription factors such as nuclear factor kappa B. Activation of these signaling mechanisms results in an increase in the expression of proinflammatory mediators, and hence enhanced inflammation. Given that many of the components of PM10 stimulate similar or even identical intracellular signaling pathways, it is conceivable that this will result in synergistic or additive interactions so that the biological response induced by PM10 exposure is a response to the composition rather than the mass alone. A small number of studies suggest that synergistic interactions occur between ultrafine particles and transition metals, between particles and allergens, and between particles and VOC's. Elucidation of the consequences of interaction between the components of PM10 in relation to their biological activity implies huge consequences for the methods used to monitor and to legislate pollution exposure in the future, and may drive a move from mass based measurements to composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aylin P, Bottle A, Wakefield J, Jarup L, Elliott P. Proximity to coke works and hospital admissions for respiratory and cardiovascular disease in England and Wales. Thorax 2001; 56: 228–233.

    Article  PubMed  CAS  Google Scholar 

  2. Becker S, Soukup JM, Gilmour MI, Devlin RB. Stimulation of human and rat alveolar macrophages by urban air particulates: effects on oxidant radical generation and cytokine production. Toxicol. Appl. Pharmacol. 1996; 141: 637–648.

    Article  PubMed  CAS  Google Scholar 

  3. Blackwell TS, Christman JW. The role of nuclear factor-kappa B in cytokine gene regulation. Am. J. Respir. Cell Mol. Biol. 1997; 17: 3–9.

    PubMed  CAS  Google Scholar 

  4. Bonvallot V, Baeza-Squiban A, Baulig, A, Brulant S, Boland S, Muzeau F, Barouki R, Marano F. Organic compounds from diesel exhaust particles elicit a proinflammatory response in human airway epithelial cells and induce cytochrome p450 1A1 expression. Am. J. Respir. Cell Mol. Biol. 2001; 25: 515–521.

    PubMed  CAS  Google Scholar 

  5. Brauer M, Ebelt ST, Fisher TV, Brumm J, Petkau AJ, Vedal S. Exposure of chronic obstructive pulmonary disease patients to particles: respiratory and cardiovascular health effects. J. Expo. Anal. Environ. Epidemiol. 2001; 11: 490–500.

    Article  PubMed  CAS  Google Scholar 

  6. Brown DM, Donaldson K. Wool and grain dusts stimulate TNF secretion by alveolar macrophages in vitro. Occup. Environ. Med. 1996; 53: 387–393.

    PubMed  CAS  Google Scholar 

  7. Brown DM, Donaldson K, Stone V. Role of calcium in the induction of TNFα expression by macrophages on exposure to ultrafine particles. Ann. Occup. Hyg. 2002; In press.

  8. Brown DM, Stone V, Findlay P, MacNee W, Donaldson K. Increased inflammation and intracellular calcium caused by ultrafine carbon black is independent of transition metals or other soluble components. Occup. Environ. Med. 2000; 57: 685–691.

    Article  PubMed  CAS  Google Scholar 

  9. Brown DM, Wilson MR, MacNee W, Stone V, Donaldson K. Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol. Appl. Pharmacol. 2001; 175: 191–199.

    Article  PubMed  CAS  Google Scholar 

  10. Carter JD, Ghio AJ, Samet JM, Devlin RB. Cytokine production by human airway epithelial cells after exposure to an air pollution particle is metal-dependent. Toxicol. Appl. Pharmacol. 1997; 146: 180–188.

    Article  PubMed  CAS  Google Scholar 

  11. Chin BY, Choi ME, Burdick MD, Strieter RM, Risby TH, Choi AM. Induction of apoptosis by particulate matter: role of TNFalpha and MAPK. Am. J. Physiol. 1998; 275: L942-L949.

    PubMed  CAS  Google Scholar 

  12. Dhainaut JF, Marin N, Mignon A, Vinsonneau C. Hepatic response to sepsis: interaction between coagulation and inflammatory processes. Crit. Care Med. 2001; 29: S42-S47.

    Article  PubMed  CAS  Google Scholar 

  13. Dockery DW, Pope CA, III. Acute respiratory effects of particulate air pollution. Annu. Rev. Public Health 1994; 15: 107–132.

    Article  PubMed  CAS  Google Scholar 

  14. Donaldson K, Brown DM, Mitchell C, Dineva M, Beswick PH, Gilmour P, MacNee W. Free radical activity of PM10: iron-mediated generation of hydroxyl radicals. Environ. Health Perspect. 1997; 105 Suppl 5: 1285–1289.

    Article  PubMed  CAS  Google Scholar 

  15. Donaldson K, Gilmour MI, MacNee W. Asthma and PM10. Respir. Res. 2000; 1: 12–15.

    Article  PubMed  CAS  Google Scholar 

  16. Duffin R, Clouter A, Brown DM, Tran CL, MacNee W, Stone V, Donaldson K. The importance of surface area and specific reactivity in the acute pulmonary inflammatory response to particles. Ann. Occup. Hyg. 2002; 46: 242–245.

    Google Scholar 

  17. Dye JA, Adler KB, Richards JH, Dreher KL. Epithelial injury induced by exposure to residual oil fly-ash particles: role of reactive oxygen species? Am. J. Respir. Cell Mol. Biol. 1997; 17: 625–633.

    PubMed  CAS  Google Scholar 

  18. Elder AC, Finkelstein J, Johnston C, Gelein R, Oberdorster G. Induction of adaptation to inhaled lipopolysaccharide in young and old rats and mice. Inhal. Toxicol. 2000; 12: 225–243.

    Article  PubMed  CAS  Google Scholar 

  19. Emerit J, Beaumont C, Trivin F. Iron metabolism, free radicals, and oxidative injury. Biomed. Pharmacother. 2001; 55: 333–339.

    Article  PubMed  CAS  Google Scholar 

  20. Ferin J, Oberdorster G, Penney DP. Pulmonary retention of ultrafine and fine particles in rats. Am. J. Respir. Cell Mol. Biol. 1992; 6: 535–542.

    PubMed  CAS  Google Scholar 

  21. Frampton MW, Ghio AJ, Samet JM, Carson JL, Carter JD, Devlin RB. Effects of aqueous extracts of PM(10) filters from the Utah valley on human airway epithelial cells. Am. J. Physiol. 1999; 277: L960-L967.

    PubMed  CAS  Google Scholar 

  22. Gavett SH, Madison SL, Stevens MA, Costa DL. Residual oil fly ash amplifies allergic cytokines, airway responsiveness, and inflammation in mice. Am. J. Respir. Crit. Care Med. 1999; 160: 1897–1904.

    PubMed  CAS  Google Scholar 

  23. Ghio AJ, Devlin RB. Inflammatory lung injury after bronchial instillation of air pollution particles. Am. J. Respir. Crit. Care Med. 2001; 164: 704–708.

    PubMed  CAS  Google Scholar 

  24. Ghio AJ, Stonchuerner J, McGee JK, Kinsey JS. Sulfate content correlates with iron concentrations in am bient air pollution particles. Inhal. Toxicol 1999; 11: 293–307.

    Article  PubMed  CAS  Google Scholar 

  25. Ghio AJ, Stonehuerner J, Dailey LA, Carter JD. Metals associated with both the water-soluble and insoluble fractions of an ambient air pollution particle catalyze an oxidative stress. Inhal. Toxicol. 1999; 11: 37–49.

    Article  PubMed  CAS  Google Scholar 

  26. Goldsmith CA, Imrich A, Danace H, Ning YY, Kobzik L. Analysis of air pollution particulate-mediated oxidant stress in alveolar macrophages. J. Toxicol. Environ. Health A. 1998; 54: 529–545.

    Article  PubMed  CAS  Google Scholar 

  27. Harrison RM, Yin, J. Particulate matter in the atmosphere: which particle properties are important for its effects on health? Sci. Total Environ. 2000; 249: 85–101.

    Article  PubMed  CAS  Google Scholar 

  28. Jiang N, Dreher KL, Dye JA, Li Y, Richards JH, Martin LD, Adler KB. Residual oil fly ash induces cytotoxicity and mucin secretion by guinea pig tracheal epithelial cells via an oxidantmediated mechanism. Toxicol. Appl. Pharmacol. 2000; 163: 221–230.

    Article  PubMed  CAS  Google Scholar 

  29. Jimenez LA, Thompson J, Brown DA, Rahman I, Antonicelli F, Duffin R, Drost EM, Hay RT, Donaldson K, MacNee W. Activation of NF-kappaB by PM(10) occurs via an iron-mediated mechanism in the absence of lkappaB degradation. Toxicol. Appl. Pharmacol. 2000; 166: 101–110.

    Article  PubMed  CAS  Google Scholar 

  30. Jones TP, Williamson BJ, BeruBe KA, Richards RJ. Microscopy and chemistry of particles collected on TEOM filters: Swansea, south Wales, 1998–1999. Atmos Environ 2001; 35: 3573–3583.

    Article  CAS  Google Scholar 

  31. Keman S, Jetten M, Douwes J, Borm PJ. Longitudinal changes in inflammatory markers in nasal lavage of cotton workers. Relation to endotoxin exposure and lung function changes. Int. Arch. Occup. Environ. Health 1998; 71: 131–137.

    Article  PubMed  CAS  Google Scholar 

  32. Li N, Venkatesan MI, Miguel A, Kaplan R, Gujuluva C, Alam J, Nel A. Induction of heme oxygenase-1 expression in macrophages by diesel exhaust particle chemicals and quinones via the antioxidant-responsive element. J. Immunol. 2000; 165: 3393–3401.

    PubMed  CAS  Google Scholar 

  33. Lightbody JH, Donaldson K, Stone V. Inflammatory effects of PM10 collected from different environments. Ann. Occup. Hyg. 2002; In press.

  34. Monn C, Becker S. Cytotoxicity and induction of proinflammatory cytokines from human monocytes exposed to fine (PM2.5) and coarse particles (PM10-2.5) in outdoor and indoor air. Toxicol. Appl. Pharmacol. 1999; 155: 245–252.

    Article  CAS  Google Scholar 

  35. Nemery B. Metal toxicity and the respiratory tract. Eur. Respir. J. 1990; 3: 202–219.

    PubMed  CAS  Google Scholar 

  36. O'Grady NP, Preas HL, Pugin J, Fiuza C, Tropea M, Reda D, Banks SM, Suffredini AF. Local inflammatory responses following bronchial endotoxin instillation in humans. Am. J. Respir. Crit. Care Med. 2001; 163: 1591–1598.

    PubMed  Google Scholar 

  37. Peters A, Doring A, Wichmann HE, Koenig W. Increased plasma viscosity during an air pollution episode: a link to mortality? Lancet 1997; 349: 1582–1587.

    Article  PubMed  CAS  Google Scholar 

  38. Peters A, Frohlich M, Doring A, Immervoll T, Wichmann HE, Hutchinson WL, Pepys MB, Koenig W. Particulate air pollution is associated with an acute phase response in men; results from the MONICA-Augsburg Study. Eur. Heart J. 2001; 22: 1198–1204.

    Article  PubMed  CAS  Google Scholar 

  39. Pineda-Molina E, Klatt P, Vazquez J, Marina A, Garcia dL, Perez-Sala D, Lamas S. Glutathionylation of the p50 subunit of NF-kappaB: a mechanism for redox-induced inhibition of DNA binding. Biochemistry 2001; 40: 14134–14142.

    Article  PubMed  CAS  Google Scholar 

  40. Pope CA, III, Schwartz J, Ransom MR. Daily mortality and PM10 pollution in Utah Valley. Arch. Environ. Health 1992; 47: 211–217.

    PubMed  Google Scholar 

  41. Quay JL, Reed W, Samet J, Devlin RB. Air pollution particles induce IL-6 gene expression in human airway epithelial cells via NF-kappaB activation. Am. J. Respir. Cell Mol. Biol. 1998; 19: 98–106.

    PubMed  CAS  Google Scholar 

  42. Samet JM, Stonehuerner J, Reed W, Devlin RB, Dailey LA, Kennedy TP, Bromberg PA, Ghio AJ. Disruption of protein tyrosine phosphate homeostasis in bronchial epithelial cells exposed to oil fly ash. Am. J. Physiol. 1997; 272: L426-L432.

    PubMed  CAS  Google Scholar 

  43. Schins RPF, Donaldson K. Nuclear factor kappa B activation by particles and fibres. Inhal. Toxicol. 2000; 12: 317–326.

    Article  CAS  Google Scholar 

  44. Schwartz J. Air pollution and daily mortality: a review and meta analysis. Environ. Res. 1994; 64: 36–52.

    Article  PubMed  CAS  Google Scholar 

  45. Seaton A, MacNee W, Donaldson K, Godden D. Particulate air pollution and acute health effects. Lancet 1995; 345: 176–178.

    Article  PubMed  CAS  Google Scholar 

  46. Sen CK, Packer L. Antioxidant and redox regulation of gene transcription. FASEB J. 1996; 10: 709–720.

    PubMed  CAS  Google Scholar 

  47. Soukup JM, Becker S. Human alveolar macrophage responses to air pollution particulates are associated with insoluble components of coarse material, including particulate endotoxin. Toxicol. Appl. Pharmacol. 2001; 171: 20–26.

    Article  PubMed  CAS  Google Scholar 

  48. Stohs SJ, Bagchi D. Oxidative mechanisms in the toxicity of metal ions. Free Radic. Biol. Med. 1995; 18: 321–336.

    Article  PubMed  CAS  Google Scholar 

  49. Stone V, Shaw J, Brown DM, MacNee W, Faux SP, Donaldson K. The role of oxidative stress in the prolonged inhibitory effect of ultrafine carbon black on epithelial cell function. Toxicol. In Vitro 1998; 12: 649–659.

    Article  CAS  Google Scholar 

  50. Stone V, Tuinman M, Vamvakopoulos JE, Shaw J, Brown D, Petterson S, Faux SP, Borm P, MacNee W, Michaelangeli F, Donaldson K. Increased calcium influx in a monocytic cell line on exposure to ultrafine carbon black. Eur. Respir. J. 2000; 15: 297–303.

    Article  PubMed  CAS  Google Scholar 

  51. Takano H, Ichinose T, Miyabara Y, Shibuya T, Lim HB, Yoshikawa T, Sagai M. Inhalation of diesel exhaust enhances allergen-related eosinophil recruitment and airway hyperresponsiveness in mice. Toxicol. Appl. Pharmacol. 1998; 150: 328–337.

    Article  PubMed  CAS  Google Scholar 

  52. van Vliet P, Knape M, de Hartog J, Janssen N, Harssema H, Brunekreef B. Motor vehicle exhaust and chronic respiratory symptoms in children living near freeways. Environ. Res. 1997; 74: 122–132.

    Article  PubMed  Google Scholar 

  53. van Zijverden M, de Haar C, van Beelen A, van Loveren H, Penninks A, Pieters R. Coadministration of antigen and particles optimally stimulates the immune response in an intranasal administration model in mice. Toxicol. Appl. Pharmacol. 2001; 177: 174–178.

    Article  PubMed  CAS  Google Scholar 

  54. Victor VM, Guayerbas N, De FM. Changes in the antioxidant content of mononuclear leukocytes from mice with endotoxin-induced oxidative stress. Mol. Cell Biochem. 2002; 229: 107–111.

    Article  PubMed  CAS  Google Scholar 

  55. von Mutuis E. Determinants of childhood asthma and atopy in West and East Germany. Eur. Respir. Rev. 1998; 8: 145–147.

    Google Scholar 

  56. Wilson MR. Lightbody JH, Donaldson K, Sales J, Stone V. Interactions between ultrafine particles and transition metals in vivo and in vitro. Toxicol. Appl. Pharmacol. 2002.

  57. Yeun JY, Levine RA, Mantadilok V, Kaysen GA. C-Reactive protein predicts all-cause and cardiovascular mortality in hemodialysis patients. Am. J. Kidney Dis. 2000; 35: 469–476.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicki Stone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stone, V., Wilson, M.R., Lightbody, J. et al. Investigating the potential for interaction between the components of PM10 . Environ Health Prev Med 7, 246–253 (2003). https://doi.org/10.1007/BF02908883

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02908883

Key words

Navigation