Skip to main content
Log in

Substantia nigra degeneration and tyrosine hydroxylase depletion caused by excess S-adenosylmethionine in the rat brain

Support for an excess methylation hypothesis for Parkinsonism

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The major symptoms of Parkinson's disease (PD) are tremors, hypokinesia, rigidity, and abnormal posture, caused by degeneration of dopamine (DA) neurons in the substantia nigra (SN) and deficiency of DA in the neostriatal dopaminergic terminals. Norepinephrine, serotonin, and melanin pigments are also decreased and cholinergic activity is increased. The cause of PD is unknown. Increased methylation reactions may play a role in the etiology of PD, because it has been observed recently that the CNS administration of S-adenosyl-l-methionine (SAM), the methyl donor, caused tremors, hypokinesia, and rigidity; symptoms that resemble those that occur in PD. Furthermore, many of the biochemical changes seen in PD resemble changes that could occur if SAM-dependent methylation reactions are increased in the brain, and interestingly,l-DOPA, the most effective drug used to treat PD, reacts avidly with SAM. So methylation may be important in PD; an idea that is of particular interest because methylation reactions increase in aging, the symptoms of PD are strikingly similar to the neurological and functional changes seen in advanced aging, and PD is age-related. For methylation to be regarded as important in PD it means that, along with its biochemical reactions and behavioral effects, increased methylation should also cause specific neuronal degeneration. To know this, the effects of an increase in methylation in the brain were studied by injecting SAM into the lateral ventricle of rats. The injection of SAM caused neuronal degeneration, noted by a loss of neurons, gliosis, and increased silver reactive fibers in the SN. The degeneration was accompanied with a decrease in SN tyrosine hydroxylase (TH) immunoreactivity, and degeneration of TH-containing fibers. At the injection site in the lateral ventricle it appears that SAM caused a weakening or dissolution of the intercellular substances; observed as a disruption of the ependymal cell layer and the adjacent caudate tissues. SAM may also cause brain atrophy; evidenced by the dilation of the cerebral ventricle. Most of the SAM-induced anatomical changes that were observed in the rat model are similar to the changes that occur in PD, which further support a role of SAM-dependent increased methylation in PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tretiakoff C. (1919) Thesis, Paris. (Cited in Schultz ref. 41 Gharib A., Sarda N., Chabannes B., Cronenberger L., and Pacheco H. (1982)J. Neurochem. 38(3), 810).

  2. Foix C. and Nicolesco J. (1925) Masson Paris. (Cited in Jellinger K. [1986] Overview of morphological changes in Parkinson's disease.Adv. Neurol. 45, 1–18).

    Google Scholar 

  3. Greenfield J. G. and Bosanquest F. D. (1953)J. Neurol. Neurosurg. Psychiat. 16, 213.

    PubMed  CAS  Google Scholar 

  4. Hornykiewicz O. (1966)Pharmacol. Rev. 18, 925.

    PubMed  CAS  Google Scholar 

  5. Poirier L. J. and Sourkes T. L. (1965)Brain 88, 181.

    Article  PubMed  CAS  Google Scholar 

  6. Nagatsu T. (1990)Adv. Neurol. 53, 207.

    PubMed  CAS  Google Scholar 

  7. Yahr M. D. and Bering E. A. (1968) inParkinson's Disease: Present Status and Research Trends, Columbia University Press, New York, p. 47.

    Google Scholar 

  8. Bernheimer H. and Hornykiewicz O. (1965)Klin-ther. Wschr. 42, 711. (Cited in Schultz, ref. 41 Gharib A., Sarda N., Chabannes B., Cronenberger L., and Pacheco H. (1982)J. Neurochem. 38(3), 810).

    Article  Google Scholar 

  9. Barbeau A. (1968)Proc. Aust. Asso. Neurol. 5, 95.

    CAS  Google Scholar 

  10. Sharman D. F. (1976) inThird Symposium on Parkinson's Disease (Gillingham F. J. and Donaldson I. M. L., eds.), E. and L. Livingston, London, p 24.

    Google Scholar 

  11. Bernheimer H., Birkmayer W., and Hornykiewicz O. (1961)Klin-ther. Wschr. 39, 1056. (cited in Schultz, ref. 41 Gharib A., Sarda N., Chabannes B., Cronenberger L., and Pacheco H. (1982)J. Neurochem. 38(3), 810).

    Article  CAS  Google Scholar 

  12. Ehringer H. and Hornykiewicz O. (1960)Klin-ther. Wschr. 38, 1236. (Cited in Schultz, ref. 41 Gharib A., Sarda N., Chabannes B., Cronenberger L., and Pacheco H. (1982)J. Neurochem. 38(3), 810).

    Article  CAS  Google Scholar 

  13. Paulus W. and Jellinger K. (1991)J. Neuropath. Exprl. Neurol. 50, 743.

    CAS  Google Scholar 

  14. Hoehn M. N., Crowlry T. J., and Rutledge C. O. (1976)J. Neurol. Neurosurg. Psychiat. 39, 941.

    PubMed  CAS  Google Scholar 

  15. Jovoy-Agid F. and Agrid Y. (1980)Neurology 30, 1326.

    Google Scholar 

  16. Turkka J. T. and Myllyla V. V. (1987)Eur. J. Neurol. 26, 1.

    CAS  Google Scholar 

  17. Ludin S. M., Steiger U. H., and Ludin H. P. (1987)J. Neurol. 235, 10.

    Article  PubMed  CAS  Google Scholar 

  18. Shelby G. (1968)J. Neurol Sci. 6, 517.

    Article  Google Scholar 

  19. Alvord E. C. Jr., Forno L. S., Russke J. A., Kaufman R. J., Rhodes J. S., and Goetowski C. R. (1974)Adv. Neurol. 5, 175.

    PubMed  Google Scholar 

  20. Jager D. H. and Bethlem J. (1960)J. Neurol. Neurosurg. Psychiat. 6, 283.

    Article  Google Scholar 

  21. Ohama E. and Ikuta F. (1976)Acta. Neuropathol. (Berl.) 34, 311.

    Article  CAS  Google Scholar 

  22. Langston J. W. and Forno L. S. (1978)Ann. Neurol. 3, 129.

    Article  PubMed  CAS  Google Scholar 

  23. Eadie M. J. (1963)Brain 86, 781.

    Article  PubMed  CAS  Google Scholar 

  24. Vanderhaegen J. J., Poirier O., Steronon J. E. (1970)Arch. Neurol. 22, 207.

    Google Scholar 

  25. Rajput A. H. and Rozdilsky B. (1970)J. Neurol. Neurosurg. Psychiat. 39, 1092.

    Google Scholar 

  26. Forno L. S. and Norvill R. L. (1976)Acta Neuropathol. 34, 183.

    Article  PubMed  CAS  Google Scholar 

  27. Jellinger R. (1986)Adv. Nerurol. 45, 1.

    Google Scholar 

  28. Jager W. A. den (1969)Arch. Neurol. (Chicago) 21, 615.

    Google Scholar 

  29. Ward C. D., Duvosin R. C., Ince S. E., Nutt J. D., Elridge R., and Calne D. B. (1983)Neurology 33, 815.

    PubMed  CAS  Google Scholar 

  30. Knoll J. (1988)Mech. Aging and Dev. 46, 237.

    Article  CAS  Google Scholar 

  31. McGree P. L., McGree E. G., and Suzeki J. S. (1977)Arch. Neurol. 34, 33.

    Google Scholar 

  32. Charlton C. G. and Way E. L. (1978)J. Pharm. Pharmac. 30, 819.

    CAS  Google Scholar 

  33. Charlton C. G. (1990) inBasic Clinical and Therapeutic Aspects of Alzheimer's and Parkinson's Diseases, vol. 1 (Nagatsu T. et al., eds.), Plenum, New York, pp. 333–339.

    Google Scholar 

  34. Charlton C. G. and Crowell B. Jr. (1992)J. Pharm. Biochem. Beh. 43, 423.

    Article  CAS  Google Scholar 

  35. Crowell B. G. Jr., Benson R., Shockley D., and Charlton C. G. (1993)Beh. Neural. Bio. 59, 186.

    Article  CAS  Google Scholar 

  36. Ernst A. M. (1962)Nature (Lond.),193, 178.

    Article  CAS  Google Scholar 

  37. Collins M. A., Neafsey E. J., Matsubara K., Cobuzzi R. J.Jr., and Rollema H. (1992)Brain Res. 570, 154.

    Article  PubMed  CAS  Google Scholar 

  38. Mays L. L. and Borek E. (1973)Nature 243, 411.

    Article  PubMed  CAS  Google Scholar 

  39. Stramentinoli G., Gualano M., Catto E., and Algeri S. J. (1977).J. Gerontol. 32(4), 392.

    PubMed  CAS  Google Scholar 

  40. Tuomisto L. (1977)J. Neurochem. 28, 271.

    Article  PubMed  CAS  Google Scholar 

  41. Gharib A., Sarda N., Chabannes B., Cronenberger L., and Pacheco H. (1982)J. Neurochem. 38(3), 810.

    Article  PubMed  CAS  Google Scholar 

  42. Sellinger O. Z., Kramer C. M., Conger A., and Duboff G. S. (1988) inMechanism of Aging and Development 43, 161.

  43. Volpe J. J. and Laster L. J. (1970)J. Neurochem. 17, 413.

    Article  PubMed  CAS  Google Scholar 

  44. Baldessarini R. J. and Ropin I. J. (1966).J. Neurochem. 13, 769.

    Article  PubMed  CAS  Google Scholar 

  45. Blusztajn J. R., Ziesel S. H., and Wurtman R. J. (1979)Brain Res. 179, 319.

    Article  PubMed  CAS  Google Scholar 

  46. Hirata F. and Axelrod J. (1978)Nature 275(5677), 219.

    Article  PubMed  CAS  Google Scholar 

  47. Muenter M. D., Sharpless N. S., and Tyce G. M. (1972)Mayo Clin. Proc. 47, 389.

    PubMed  CAS  Google Scholar 

  48. Feuerstein C., Tauche M., Serre F., Gavend M., Pellat J., and Perret J. (1977)Acta. Neurol. Scand. 56, 79.

    Article  PubMed  CAS  Google Scholar 

  49. Mena M. A., Murados V., Brazen E., Reiriz J., and De Yebenes J. G. (1977)Adv. Neurol. 45, 481.

    Google Scholar 

  50. Hardie R. J., Lees A. J., and Stern G. M. (1986)Adv. Neurol. 45, 487.

    Google Scholar 

  51. Wurtman R. J., Rose C. M., and Matthyssee S. (1970)Science 169, 395.

    Article  PubMed  CAS  Google Scholar 

  52. Mays-Hoopes L. (1985) inMolecular Biology of Aging: Gene Stability and Gene Expression (Sohal R. S., et al. eds.), Raven, New York, p. 49.

    Google Scholar 

  53. Albert B., Bray D., Lewis J., Raff M., Roberts R., and Watson J. D. (1989)Molecular Biology of the Cell, 2nd ed. Garland, New York.

    Google Scholar 

  54. Jenner P. J. and Marsden C. D. (1988) inParkinson's Disease and Movement Disorders (Jankovic J. and Tolosa E., eds.), Urban and Schwarzenberg, Baltimore—Munich, pp. 37–48.

    Google Scholar 

  55. Schultz W. (1988)Gen. Pharmac. 19(2), 153.

    CAS  Google Scholar 

  56. Coons A. H. (1958) inGeneral Cytochemical Methods (Danielli J. F., ed.), Academic, New York, pp. 339–422.

    Google Scholar 

  57. Clark G. (1989)Staining Procedures, 4th ed., Williams and Wilkins, Baltimore, MD.

    Google Scholar 

  58. Fink R. P. and Heimer L. (1967)Brain Res. 4, 369.

    Article  PubMed  CAS  Google Scholar 

  59. Crowell B. Jr. and Charlton C. G. (1992)Neurosci. Abst. 658, 15.

    Google Scholar 

  60. Gagnon C., Axelrod J., and Brownstein M. J. (1978).Life Sci. 22, 2155.

    Article  PubMed  CAS  Google Scholar 

  61. Diliberto E. J., Viveros O. H., and Axelrod J. (1976)Proc. Natl. Acad. Sci. USA 73, 4050.

    Article  PubMed  CAS  Google Scholar 

  62. Randal E. I. (1990)Adv. Neurol. 53, 305.

    Google Scholar 

  63. Maybery H. S., Starkstein S. E., Sadzot B., Preziosi T., Andrezejewski P. L., Dannals R. F., Wagner H. N. Jr., and Robinson R. G. (1990)Ann. Neurol. 28, 57.

    Article  Google Scholar 

  64. Goldman J. and Cote L. (1991) inPrinciple of Neural. J. Science, 3rd ed. (Kendel E. R., Schwartz J. H., and Jessell T. M., eds.), Appleton and Lange, Norwalk, CT, pp. 974–983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charlton, C.G., Mack, J. Substantia nigra degeneration and tyrosine hydroxylase depletion caused by excess S-adenosylmethionine in the rat brain. Mol Neurobiol 9, 149–161 (1994). https://doi.org/10.1007/BF02816115

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02816115

Index Entries

Navigation