Skip to main content
Log in

Sources of nutrient pollution to coastal waters in the United States: Implications for achieving coastal water quality goals

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

Some 60% of coastal rivers and bays in the U.S. have been moderately to severely degraded by nutrient pollution. Both nitrogen (N) and phosphorus (P) contribute to the problem, although for most coastal systems N additions cause more damage. Globally, human activity has increased the flux of N and P from land to the oceans by 2-fold and 3-fold, respectively. For N, much of this increase has occurred over the past 40 years, with the increase varying by region. Human activity has increased the flux of N in the Mississippi River basin by 4-fold, in the rivers of the northeastern U.S. by 8-fold, and in the rivers draining to the North Sea by more than 10-fold. The sources of nutrients to the coast vary. For some estuaries, sewage treatment plants are the largest single input; for most systems nonpoint sources of nutrients are now of relatively greater importance, both because of improved point source treatment and control (particularly for P) and because of increases in the total magnitude of nonpoint sources (particularly for N) over the past three decades. For P, agricultural activities dominate nonpoint source fluxes. Agriculture is also the major source of N in many systems, including the flux of N down the Mississippi River, which has contributed to the large hypoxic zone in the Gulf of Mexico. For both P and N, agriculture contributes to nonpoint source pollution both through losses at the field scale, as soils erode away and fertilizer is leached to surface and ground waters, and from losses from animal feedlot operations. In the U.S. N from animal wastes that leaks directly to surface waters or is volatilized to the atmosphere as ammonia may be the single largest source of N that moves from agricultural operations into coastal waters. In some regions, including the northeastern U.S., atmospheric deposition of oxidized N from fossil-fuel combustion is the major flux from nonpoint sources. This atmospheric component of the N flux into estuaries has often been underestimated, particularly with respect to deposition onto the terrestrial landscape with subsequent export downstream. Because the relative importance of these nutrient sources varies among regions and sites, so too must appropriate and effective mitigation strategies. The regional nature and variability of nutrient sources require that nutrient management efforts address large geographic areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Aber, J. D. andC. T. Driscoll. 1997. Effects of land use, climate variation, and nitrogen deposition on nitrogen cycling and carbon storage in northern hardwood forests.Global Biogeochemical Cycles 11:639–648.

    Article  CAS  Google Scholar 

  • Aber, J. D., K. J. Nadelhoffer, P. Steudler, andJ. M. Melillo. 1989. Nitrogen saturation in northern forest ecosystems.BioScience 39:378–386.

    Article  Google Scholar 

  • Aber, J. D., S. V. Ollinger, andC. T. Driscoll. 1997. Modeling nitrogen saturation in forest ecosystems in response to land use and atmospheric deposition.Ecological Modeling 101:61–78.

    Article  Google Scholar 

  • Alexander, R. B., P. J. Johnes, E. A. Boyer, andR. A. Smith. 2002. A comparison of models for estimating the riverine export of nitrogen from large watersheds.Biogeochemistry 57: 295–339.

    Article  Google Scholar 

  • Alexander, R. B., R. A. Smith, andG. E. Schwarz. 2000. Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico.Nature 403:758–761.

    Article  CAS  Google Scholar 

  • Bashkin, V. N. 1997. The critical load concept for emission abatement strategies in Europe: A review.Environmental Conservation 24:5–13.

    Article  CAS  Google Scholar 

  • Bengston, L., P. Seuna, A. Lepisto, andR. K. Saxena. 1992. Particle movement of meltwater in a subdrained agricultural basin.Journal of Hydrology 135:383–398.

    Article  Google Scholar 

  • Bock, B. R. 1984. Efficient use of nitrogen in cropping system, p. 273–294.In R. D. Hauck (ed.), Nitrogen in Crop Production. American Society of Agronomists, Madison, Wisconsin.

    Google Scholar 

  • Bouwman, A. F. andH. Booij. 1998. Global use and trade of feedstuffs and consequences for the nitrogen cycle.Nutrient Cycling in Agroecosystems 52:261–267.

    Article  Google Scholar 

  • Bouwman, A. F., D. S. Lee, A. H. Asman, F. J. Dentener, K. W. van der Hoek, andJ. G. J. Olivier. 1997. A global high-resolution emission inventory for ammonia.Global Biogeochemical Cycles 11:561–587.

    Article  CAS  Google Scholar 

  • Boynton, W. R., J. H. Garber, R. Summers, andW. M. Kemp. 1995. Inputs, transformations, and transport to nitrogen and phosphorus in Chesapeake Bay and selected tributaries.Estuaries 18:285–314.

    Article  CAS  Google Scholar 

  • Bredemeier, M., K. Blanck, Y. J. Xu, A. Tieteam, A. W. Boxman, B. A. Emmett, F. Moldan, P. Gundersen, P. Schleppi, andR. F. Wright. 1998. Input-output budgets at the NITREX sites.Forest Ecology and Management 101:57–64.

    Article  Google Scholar 

  • Bricker, S. B., C. G. Clement, D. E. Pirhalla, S. P. Orlando, andD. G. G. Farrow. 1999. National Estuarine Eutrophication Assessment: Effects of Nutrient Enrichment in the Nation’s Estuaries. National Ocean Service, National Oceanic and Atmospheric Administration, Silver Spring, Maryland.

    Google Scholar 

  • Campbell, J. L., J. W. Hornbeck, W. H. McDowell, D. C. Buso, J. B. Shaley, andG. E. Likens. 2000. Dissolved organic nitrogen budgets for upland, forested ecosystems in New England.Biogeochemistry 49:123–142.

    Article  CAS  Google Scholar 

  • Carpenter, S. R., N. F. Caraco, D. L. Correll, R. W. Howarth, A. N. Sharpley, andV. H. Smith. 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen.Issues in Ecology 3:1–12.

    Google Scholar 

  • Cleveland, C. C., A. R. Townsend, D. S. Schimel, H. Fisher, R. W. Howarth, L. O. Hedin, S. S. Perakis, E. F. Latty, J. C. von Fischer, A. Elseroad, andM. F. Wasson. 1999. Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems.Global Biogeochemical Cycles 13:623–645.

    Article  CAS  Google Scholar 

  • Dodds, W. K., J. M. Blari, G. M. Henebry, J. K. Koelliker, R. Ramundo, andC. M. Tate. 1996. Nitrogen transport from tall grass prairie watersheds.Journal of Environmental Quality 25: 973–981.

    CAS  Google Scholar 

  • Durka, W., E. D. Schultze, G. Gebauer, andS. Voerkelius. 1994. Effects of forest decline on uptake and leaching of deposited nitrate determined from15N and18O measurements.Nature 372:765–767.

    Article  CAS  Google Scholar 

  • Ekholm, P. 1994. Bioavailability of phosphorus in agriculturally loaded rivers in southern Finland.Hydrobiologia 287:179–194.

    CAS  Google Scholar 

  • Emmett, B. A., D. Boxman, M. Bredemeier, P. Gundersen, O. J. Kjønaas, F. Moldan, P. Schleppi, A. Tietema, andR. F. Wright. 1998. Predicting the effects of atmospheric deposition in conifer stands: Evidence from the NITREX ecosystem-scale experiments.Ecosystems 1:352–360.

    Article  CAS  Google Scholar 

  • Emmett, B. A. andB. Reynolds. 1996. Nitrogen critical loads for spruce plantations in Wales: Is there too much nitrogen?Forestry 69:200–214.

    Article  Google Scholar 

  • Environmental Protection Agency. 1983. Results of the Nationwide Urban Runoff Program. U.S. Government Printing Office, Washington, D.C.

    Google Scholar 

  • Environmental Protection Agency. 1999. Deposition of air pollutants to the great waters. Third Report to Congress. U.S. Government Printing Office, Washington, D.C.

    Google Scholar 

  • Evans, R., L. C. Cuffman-Neff, andR. Nehring. 1996. Increases in agricultural productivity, 1948–1993.In Updates on Agricultural Resources and Environmental Indicators No. 6. U.S. Department of Agriculture-Economic Research Service, U.S. Government Printing Office, Washington, D.C.

    Google Scholar 

  • Fahey, T. J., C. J. Williams, J. N. Rooney-Varga, C. C. Cleveland, K. M. Postek, S. D. Smith, andD. R. Bouldin. 1999. Nitrogen deposition in and around an intensive agricultural district in central New York.Journal of Environmental Quality 28:1585–1600.

    CAS  Google Scholar 

  • Fisher, H. B. andM. Oppenheimer. 1991. Atmospheric nitrate deposition and the Chesapeake Bay estuary.Ambio 20:102.

    Google Scholar 

  • Galloway, J. N., W. H. Schlesinger, C. Levy, A. Michaels, andJ. L. Schnoor. 1995. Nitrogen fixation: Anthropogenic enhancement and environmental response.Global Biogeochemical Cycles 9:235–252.

    Article  CAS  Google Scholar 

  • Gardner, G. 1998. Recycling organic wastes, p. 96–112.In L. Brown, C. Flavin, and H. French (eds.), State of the World. W. W. Norton, New York.

    Google Scholar 

  • Gburek, W. J. andA. N. Sharpley. 1998. Hydrologic controls on phosphorus loss from upland agricultural watersheds.Journal of Environmental Quality 27:267–277.

    CAS  Google Scholar 

  • Gburek, W. J., A. N. Sharpley, A. L. Heathwaite, andG. J. Folmar. 2000. Phosphorus management at the watershed scale: A modification of the phosphorus index.Journal of Environmental Quality 29:130–144.

    CAS  Google Scholar 

  • Goolsby, D. A. andW. A. Battaglin. 2000. Nitrogen in the Mississippi River basin: Estimating sources and predicting flux to the Gulf of Mexico. U.S. Geological Survey Fact Sheet, FS-135-00. U.S. Geological Survey, Reston, Virginia.

    Google Scholar 

  • Goolsby, D. A., W. A. Battaglin, G. B. Lawrence, R. S. Artz, B. T. Aulenbach, R. P. Hooper, D. R. Kenney, andG. J. Stensland. 1999. Flux and sources of nutrients in the Mississippi-Atchafalaya River basin: Topic 3, Report for the integrated assessment of hypoxia in the Gulf of Mexico. NOAA Coastal Ocean Program Decision Analysis Series No. 17. National Oceanic and Atmospheric Administration Coastal Ocean Office, Silver Spring, Maryland.

    Google Scholar 

  • Gundersen, P. andV. Bashkin. 1994. Nitrogen cycling.In N. Moldan and J. Cerny (eds.), Biogeochemistry of Small Catchments: A Tool for Environmental Research. John Wiley and Sons, Chichester, U.K.

    Google Scholar 

  • Hauhs, M., K. Rost-Siebert, G. Ragen, T. Paces, andB. Vigerus. 1989. Summary of European data: The role of nitrogen in the acidification of soils and surface waters.Miljorapport 10: 92.

    Google Scholar 

  • Heathwaite, A. L. andP. J. Johnes. 1996. The contribution of nitrogen species and phosphorus fractions to stream water quality in agricultural catchments.Hydrological Processes 10: 971–983.

    Article  Google Scholar 

  • Hedin, L. O., J. J. Armesto, andA. H. Johnson. 1995. Patterns of nutrient loss from unpolluted old-growth temperate forests: Evaluation of biogeochemical theory.Ecology 76:493–509.

    Article  Google Scholar 

  • Hedley, M. J. andA. N. Sharpley. 1998. Strategies for global nutrient cycling, p. 70–95.In L. Currie (ed.), Long-Term Nutrient Needs for New Zealand’s Primary Industries: Global Supply, Production Requirements and Environmental Constraints. The Fertilizer and Lime, Research Centre, Massey University, Palmerston North, New Zealand.

    Google Scholar 

  • Hetling, L. J., N. A. Jaworski, andD. J. Garetson. 1996. Comparison of in put loadings and riverine export fluxes in large watersheds.In Third International Conference on Diffuse Pollution. International Association of Water Quality, Edinburgh, Scotland.

    Google Scholar 

  • Hobbie, J. E. andG. E. Likens. 1973. Output of phosphorus, organic carbon, and fine particulate carbon from Hubbard Brook watersheds.Limnology and Oceanography 18:734–742.

    Article  Google Scholar 

  • Holland, E. A., F. J. Dentener, B. H. Braswell, andJ. M. Sulzman. 1999. Contemporary and pre-industrial global reactive nitrogen budgets.Biogeochemistry 46:7–43.

    CAS  Google Scholar 

  • House, W. A. andH. Casey. 1988. Transport of phosphorus in rivers, p. 253–282.In H. Tiessen (ed.), Phosphorus in the Global Environment. John Wiley, New York.

    Google Scholar 

  • Howarth, R. W. 1988. Nutrient limitation of net primary production in marine ecosystems.Annual Reviews in Ecology and Systematics 19:89–110.

    Article  Google Scholar 

  • Howarth, R. W. 1998. An assessment of human influences on inputs of nitrogen to the estuaries and continental shelves of the North Atlantic Ocean.Nutrient Cycling in Agroecosystems 52: 213–223.

    Article  Google Scholar 

  • Howarth, R., D. Anderson, J. Cloern, C. Elfring, C. Hopkinson, B. Lapointe, T. Malone, N. Marcus, K. McGlathery, A. Sharpley, andD. Walker. 2000. Nutrient pollution of coastal rivers, bays, and seas.Issues in Ecology 7:1–15.

    Google Scholar 

  • Howarth, R. W., G. Billen, D. Swaeny, A. Townsend, N. Jaworski, K. Lajtha, J. A. Downing, R. Elmgren, N. Caraco, T. Jordan, F. Berendse, J. Freney, V. Kudeyarov, P. Murdoch, andZ. Zaho-Lina. 1996. Regional nitrogen budgets and riverine N and P fluxes for the drainages to the North Atlantic Ocean: Natural and human influencesBiogeochemistry 35:75–139.

    Article  CAS  Google Scholar 

  • Howarth, R. W., E. Boyer, W. Pabich, andJ. Galloway. 2002. Nitrogen use in the United States from 1961–2000, and estimates of potential future trends.Ambia 31:88–96.

    Article  Google Scholar 

  • Howarth, R. W., H. S. Jensen, R. Marino, andH. Postma. 1995. Transport to and processing of phosphorus in nearshore and oceanic waters, p. 323–345.In H. Tiessen (ed.), Phosphorus in the Global Environment. John Wiley, New York.

    Google Scholar 

  • Isserman, K. 1990. Share of agriculture in nitrogen and phosphorus emissions into the surface waters of western Europe against the background of their eutrophication.Fertilizer Research 26:253–269.

    Article  Google Scholar 

  • Jaworski, N. A. 1990. Retrospective study of the water quality issues of the upper Potomac estuary.Aquatic Science 3:11–40.

    Google Scholar 

  • Jaworski, N. A., R. W. Howarth, andL. J. Hetling. 1997. Atmospheric deposition of nitrogen oxides onto the landscape contributes to coastal eutrophication in the northeast United States.Environmental Science and Technology 31:1995–2004.

    Article  CAS  Google Scholar 

  • Johnson, D. W. 1992. Nitrogen retention in forest soils.Journal of Environmental Quality 21:1–12.

    Google Scholar 

  • Johnston, D. W. andS. E. Lindberg (eds.) 1992. Atmospheric Deposition and Forest Nutrient Cycling: A Synthesis of the Integrated Forest Study. Springer-Verlag, New York.

    Google Scholar 

  • Kellogg, R. L. andC. H. Lander. 1999. Trends in the potential for nutrient loadings from confined livestock operations.In The State of North America’s Private Land. U.S. Government Printing Office, Washington, D.C.

    Google Scholar 

  • Lajtha, K., B. Seely, andI. Valiela. 1995. Retention and leaching losses of atmospherically derived nitrogen in the aggrading coastal watershed of Waquoit Bay, Massachusetts.Biogeochemistry 28:33–54.

    Article  CAS  Google Scholar 

  • Lander, C. H., D. Moffitt, andK. Alt. 1998. Nutrients Available from Livestock Manure Relative to Crop Growth Requirements. Resource Assessment and Strategic Planning Working Paper 98-1. U.S. Department of Agriculture, Natural Resources Conservation Service, Washington, D.C.

    Google Scholar 

  • Lanyon, L. E. andP. B. Thompson. 1996. Changing emphasis of farm production, p. 15–23In M. Salis and J. Popow (eds.), Animal Agriculture and the Environment: Nutrients, Pathogens, and Community Relations. Northeast Regional Agricultural Engineering Service, Ithaca, New York.

    Google Scholar 

  • Lewis, W. M. 2000. Yield of nitrogen from minimally disturbed watersheds of the United States.Biogeochemistry 57:375–385.

    Article  Google Scholar 

  • Lewis, W. M., J. M. Melack, W. H. McDowell, M. McClain, andJ. E. Richey. 1999. Nitrogen yields from undisturbed watersheds in the Americas.Biogeochemistry 46:149–162.

    CAS  Google Scholar 

  • Litke, D. W. 1999. Review of phosphorus control measures in the United States and their effects on water quality. Water-Resources Investigations Report 99-4007. U.S. Geological Survey, Denver, Colorado.

    Google Scholar 

  • Lovett, G. M. andS. E. Lindberg. 1993. Atmospheric deposition and canopy interactions of nitrogen in forests.Canadian Journal of Forest, Research 23:1603–1616.

    Article  CAS  Google Scholar 

  • Magill, A. H., J. D. Aber, J. J. Hendricks, R. D. Bowden, J. M. Melillo, andP. A. Steuder. 1997. Biogeochemical response of forest ecosystems to simulated chronic nitrogen deposition.Ecological Applications 7:402–415.

    Article  Google Scholar 

  • Matson, P. A., W. J. Parton, A. G. Power, andM. J. Swift. 1997. Agricultural intensification and ecosystem properties.Science 277:504–509.

    Article  CAS  Google Scholar 

  • McIsaac, G. F., M. B. David, G. Z. Gertner, andD. A. Goolsby. 2001. Net anthropogenic N input to the Mississippi River basin and nitrate flux to the Gulf of Mexico.Nature 414:166–167.

    Article  CAS  Google Scholar 

  • Meade, R. H. 1988. Movement and storage of sediment in river systems, p. 165–179.In A. Lerman and M. Meybeck (eds.), Physical and Chemical Weathering in Geochemical Cycles. Kluwer, Dordrecht.

    Google Scholar 

  • National Research Council. 1993a. Managing Wastewater in Coastal Urban Areas. National Academy Press, Washington. D.C.

    Google Scholar 

  • National Research Council. 1993b. Soil and Water Quality: An Agenda for Agriculture. National Academy Press, Washington, D.C.

    Google Scholar 

  • National Research Council. 2000. Clean Coastal Waters: Understanding and Reducing the Effects of Nutrient Pollution. National Academy Press, Washington, D.C.

    Google Scholar 

  • Nelson, D. 1985. Minimizing nitrogen losses in non-irrigated eastern areas, p. 173–209.In Plant Nutrient Use and the Environment. Fertilizer Institute, Washington, D.C.

    Google Scholar 

  • Nixon, S. W., J. W. Ammerman, L. P. Atkinson, V. M. Berounsky, G. Billen, W. C. Boicourt, W. R. Boyton, T. M. Church, D. M. DiToro, R. Elmgren, J. H. Garber, A. E. Giblin, R. A. Jahnke, N. J. P. Owens, M. E. Q. Pilson, andS. P. Seitzinger. 1996. The fate of nitrogen and phosphorus at the land-sea margin of the North Atlantic Ocean.Biogeochemistry 35:141–180.

    Article  CAS  Google Scholar 

  • Omernik, J. M. 1977. Nonpoint Source-Stream Nutrient Level Relationships: A Nationwide Study. EPA-600/3-77-105. Environmental Protection Agency, Corvallis, Oregon.

    Google Scholar 

  • Paerl, H. W. 1985. Enhancement of marine primary production by nitrogen-enriched acid rain.Nature 316:747–749.

    Article  Google Scholar 

  • Paerl, H. W. 1997. Coastal eutrophication and harmful algal blooms: The importance of atmospheric and groundwater as “new” nitrogen and other nutrient sources.Limnology and Oceanography 42:1154–1165.

    CAS  Google Scholar 

  • Paerl, H. W. andR. Whitall. 1999. Anthropogenically derived atmospheric nitrogen deposition, marine eutrophication and harmful algal bloom expansion: Is there a link?.Ambio 28:307–311.

    Google Scholar 

  • Pardo, L. andC. Driscoll. 1993. A critical review of mass balance methods for calculating critical loads of nitrogen for forested ecosystems.Environment 1:145–156.

    CAS  Google Scholar 

  • Pionke, H. B., W. J. Gburek, andA. N. Sharpley. 2000. Critical source area controls on water quality in an agricultural, watershed located in the Chesapeake basin.Ecological Engineering 14:325–335.

    Article  Google Scholar 

  • Prospero, J. M., K. Barrett, T. Church, F. Dentner, R. A. Duce, J. N. Galloway, H. Levy, J. Moddy, andP. Quinn. 1996. Atmospheric deposition of nutrient to the North Atlantic basin.Biogeochemistry 35:75–139.

    Article  Google Scholar 

  • Rast, W. andG. F. Lee. 1978. Summary Analysis of the North American OECD Eutrophication Project: Nutrient Loading, Lake Response Relationships, and Trophic State Indices. EPA 600/3-78-008. U.S. Environmental Protection Agency, Corvalis, Oregon.

    Google Scholar 

  • Ryden, J. C., J. K. Syers, andR. F. Harris. 1973. Phosphorus in runoff and streams.Advances in Agronomy 25:1–45.

    Article  CAS  Google Scholar 

  • Schoumans, O. F. andA. Breeuwsma. 1997. The relation between accumulation and leaching of phosphorus: Laboratory, field and modelling results, p. 361–363.In H. Tunney, O. T. Carton, P. C. Brookes, and A. E. Johnston (eds.), Phosphorus Loss from Soil to Water. CAB International Press, Cambridge, U.K.

    Google Scholar 

  • Schreiber, J. D., P. D. Duffy, andD. C. McClurkin. 1976. Dissolved nutrient losses in storm runoff from five southern pine watersheds.Journal of Environmental Quality 5:201–205.

    CAS  Google Scholar 

  • Schulze, E. D., W. de Vries, M. Hauhs, K. Rosen, L. Rasmussen, O. C. Tann, andJ. Nilsson. 1989. Critical loads for nitrogen deposition in forest ecosystems.Water, Air, and Soil Pollution 48:451–456.

    Article  CAS  Google Scholar 

  • Seitzinger, S. P., R. V. Styles, E. W. Boyer, R. Alexander, G. Billen, R. Howarth, B. Mayer, and N. van Breemen. 2002. Nitrogen retention in rivers: Model development and application to watersheds in the northeastern U. S.Biogeochemistry in press.

  • Sharpley, A. N. 1993. Assessing phosphorus bioavailability in agricultural soils and runoff.Ferlilizer Research 36:259–272.

    Article  CAS  Google Scholar 

  • Sharpley, A. N., S. C. Chapra, R. Wedepohl, J. T. Sims, T. C. Daniel, andK. R. Reddy. 1994. Managing agricultural phosphorus for protection of surface waters: Issues and options.Journal of Environmental Quality 23:437–451.

    CAS  Google Scholar 

  • Sharpley, A. N., W. J. Gburek, andG. Folmar. 1998. Integrated phosphorus and nitrogen management in animal feeding operations for water quality protection, p. 72–94.In R. W. Masters and D. Goldman (eds.), Animal Feeding Operations and Ground Water: Issues, Impacts, and Solutions. National Ground Water Association, Westerville, Ohio.

    Google Scholar 

  • Sharpley, A. N., M. J. Hedley, E. Sibbesen, A. Hillbricht-Ilkowsk, W. A. House, andL. Ryszkowski. 1995. Phosphorus transfers from terrestrial to aquatic ecosystems, p. 173–242.In H. Tiessen (ed.), Phosphorus in the Global Environment. John Wiley, Chichester, U.K.

    Google Scholar 

  • Sharpley, A. N. andS. Rekolainen. 1997. Phosphorus in agriculture and its environmental implications, p. 1–54,In H. Tunney O. T. Carton P. C. Brookes, and A. E. Johnston (eds.), Phosphorus Loss from Soil to Water. CAB International Press, Cambridge, U.K.

    Google Scholar 

  • Sharpley, A. N. andJ. K. Syers. 1979. Loss of nitrogen and phosphorus in tile drainage as influenced by urea application and grazing animals.New Zealand Journal of Agricultural Research 22:127–131.

    CAS  Google Scholar 

  • Sims, J. T., R. R. Simard, andB. C. Joern. 1998. Phosphorus losses in agricultural drainage: Historical perspective and current research.Journal of Environmental Quality 27:277–293.

    Article  CAS  Google Scholar 

  • Skeffington, R. A. 1999. The use of critical loads in environmental policy making: A critical appraisal.Environmental Science and Technology 33:245.

    Google Scholar 

  • Smil, V. 2001. Enriching the Earth. MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  • Smith, R. A., R. B. Alexander, andM. G. Wolman. 1987. Waterquality trends in the nation’s rivers.Science 235: 1607–1615.

    Article  CAS  Google Scholar 

  • Smith, R. A. G. E. Schwarz, andR. B. Alexander. 1997. Regional interpretation of water-quality monitoring data.Water Resources Research 33:2781–2798.

    Article  CAS  Google Scholar 

  • Taylor, A. W., W. M. Edwards, andE. C. Simpson 1971. Nutrients in streams draining woodland and farmland near Coshocton, Ohio.Water Resources Research 7:81–90.

    Article  CAS  Google Scholar 

  • U.S. Department of Agriculture. 1989. Fact Book of Agriculture. Miscellaneous Publications No1063. Office of Public Affairs, Washington, D.C.

    Google Scholar 

  • Valigura, R. A., R. B. Alexander, M. S. Castro, T. P. Meyers, H. W. Paerl, P. E. Stacey, andR. E. Turner (eds.). 2000. Nitrogen Loading in Coastal Water Bodies. An Atmospheric Perspective. Coastal and Estuaries Series, No. 57. American Geophysical Union, Washington, D.C.

    Google Scholar 

  • van Breemen, N., E. W. Boyer, C. L. Goodale, N. A. Jaworski, S. Seitzinger, K. Paustian, L. Hetling, K. Lajtha, M. Eve, B. Mayer, D. van Dam, R. W. Howarth, K. J. Nadelhoffer, and G. Billen. 2002. Nitrogen budgets for 16 watersheds draining to the northeastern U.S. coast: Storage and losses of nitrogen inputs.Biogeochemistry in press.

  • van Breemen, N., P. A. Burroughs, E. J. Velthorst, H. F. van Dobben, T. de Wit, T. B. Ridder, andH. F. R. Reijnders. 1982. Soil acidification from atmospheric ammonium sulphate in forest canopy throughfall.Nature 299:548–550.

    Article  Google Scholar 

  • Vitousek, P. M., J. Aber, S. E. Bayley, R. W. Howarth, G. E. Likens, P. A. Matson, D. W. Schindler, W. H. Schlesinger, andG. D. Tilman. 1997. Human alteration of the global nitrogen cycle: Causes and consequences.Ecological Issues 1:1–15.

    Google Scholar 

  • Vitousek, P. M. andR. W. Howarth. 1991. Nitrogen limitation on land and sea: How can it occur?.Biogeochemistry 13:87–115.

    Article  Google Scholar 

  • Vitousek, P. M. andW. A. Reiners. 1975. Ecosystem succession and nutrient retention: A hypothesis.BioScience 25:376–381.

    Article  CAS  Google Scholar 

  • Whelpdale, D. M., P. Summer, andE. Sanhuez. 1997. A global overview of atmospheric acid deposition fluxes.Environmental Monitoring and Assessment 48:217–227.

    Article  CAS  Google Scholar 

  • Whitehead, D. C. andN. Raistrick. 1990. Ammonia volatilization from five nitrogen compounds used as fertilizers following surface application to soils.Journal of Soil Science 41:387–394.

    Article  CAS  Google Scholar 

  • Williams, M. W., J. S. Baron, N. Caine, R. Sommerfeld, andR. J. Sanford. 1996. Nitrogen saturation in the Rocky Mountains.Environmental Science and Technology 30:640–646.

    Article  CAS  Google Scholar 

  • Zarbock, H. W., A. J. Janicki, and S. S. Janicki. 1996. Estimates of Total Nitrogen, Total Phosphorus, and Total Suspended Solids to Tampa Bay, Florida. Tampa Bay National Estuary Program Technical Publication #19-96. St. Petersburg, Florida.

Sources of Unpublished Materials

  • Food and Agriculture Organization. 1999. FAOSTAT Agriculture Data. http://apps.fao.org/cgi-bin/nph-dp.pl?subset=agriculture.

  • Smith, R. A. Personal Communication. United States Geological Survey, Reston, Virginia.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert W. Howarth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howarth, R.W., Sharpley, A. & Walker, D. Sources of nutrient pollution to coastal waters in the United States: Implications for achieving coastal water quality goals. Estuaries 25, 656–676 (2002). https://doi.org/10.1007/BF02804898

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02804898

Keywords

Navigation