Skip to main content
Log in

Enzyme heterozygosity, metabolism, and developmental stability

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Developmental homeostasis, measured as either fluctuating asymmetry or variance of morphological characters, increases with enzyme heterozygosity in many, but not all, natural populations. These results have been reported forDrosophila, monarch butterflies, honeybees, blue mussels, side-blotched lizards, killifish, salmonid fishes, guppies, Sonoran topminnows, herring, rufous-collared sparrows, house sparrows, brown hares, white-tailed deer, and humans. Because heterozygosity at a few loci can not predict heterozygosity of the entiry genome, these loci must be detecting localized zones that influence the developmental environment.

Studies of malate dehydrogenase in honeybees,Apis mellifera, and lactate dehydrogenase in killifish,Fundulus heteroclitus, revealed that developmental homeostasis varied with heterozygosity of individual loci. Heterozygotes differed from homozygotes in fluctuating asymmetry, morphological variance, and in correlations between morphological characters.

The protein loci in these studies code for enzymes, and therefore do not directly influence morphological characters. However, some enzymatic loci substantially influence metabolism, and contribute to variation in the amount of energy available for development and growth. This argument can be made most convincingly for the LDH polymorphism in killifish. LDH genotypes differ in enzyme kinetic properties that measure differences in physiological efficiency, and these differences produce measurable and predictable differences in physiology and development. Under environmental conditions which impose a stress upon development, genotypes at these loci may have different amounts of energy available for development, and consequently exhibit different levels of developmental homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allard, R. W., 1975. The mating system and microevolution. Genetics 79s: 115–126.

    Google Scholar 

  • Baker, C. M. A. & C. Manwell, 19077. Heterozygosity of the sheep: Polymorphism of ‘malic enzyme’, isocitrate dehydrogenase (Nadp), catalase and esterase. Aust. J. Biol. Sci. 30: 127–140.

    Google Scholar 

  • Bayne, B. L. & R. C. Newell, 1983. Physiological energetics in marine molluscs. In A. S. M. Saleudden and K. M. Wilburg (eds.) The Mollusca 4: 407–515. Academic Press, New York.

    Google Scholar 

  • Beachman, T. D. & R. E. Withler, 1985. Heterozygosity and morphological variability of chum salmon (Oncorhynchus keta) in southern British Columbia. Heredity 54: 313–322.

    Google Scholar 

  • Beacham, T. D. & R. E. Withler, 1987. Developmental stability and heterozygosity in chum (Oncorhynchus keta) and pink (Oncorhynchus gorbuscha) salmon. Can. J. Zool 65: 1823–1826.

    Google Scholar 

  • Beacham, T. D., 1991. Developmental stability, heterozygosity, and genetic analysis of morphological variation in pink salmon ‘Oncorhynchus gorbuscha’. Can. J. Zool. 69: 274–278.

    Google Scholar 

  • Beardmore, J. A. & S. A. Shami, 1979. Heterozygosity and the optimum phenotype under stabilising selection. Aquilo. Ser. Zool. 20: 100–110.

    Google Scholar 

  • Bijlsma-Meeles, E. & R. Bijlsma, 1988. The alcohol dehydrogenase polymorphism inDrosophila melanogaster. Fitness measurements and predictions under conditions with no alcohol stress. Genetics 120: 743–753.

    CAS  PubMed  Google Scholar 

  • Booth, C. L., P. S. Woodruff & S. J. Gould, 1990. Lack of significant associations between allozyme heterozygosity and phenotypic traits in the land snailCerion. Evolution 44: 210–213.

    Article  Google Scholar 

  • Bottini, E., F. Gloria-Bottini, P. Lucarelli, Al Polzonetti, F. Santoro & A. Ververi, 1979. Genetic polymorphisms and intrauterine development: Evidence of decreased heterozygosity in light for dates human newborn babies. Experientia 35: 1565–1567.

    Article  CAS  PubMed  Google Scholar 

  • Bruckner, D., 1976. The influence of genetic variability on wing symmetry in honeybees. (Apis mellifera). Evolution 30: 100–108.

    Article  Google Scholar 

  • Chakraborty, R., 1981. The distribution of the number of heterozygous loci in an individual in natural populations. Genetics 98: 461–466.

    PubMed  Google Scholar 

  • Chakraborty, R., 1987. Biochemical heterozygosity and phenotypic variability of polygenic traits. Heredity 59: 19–28.

    PubMed  Google Scholar 

  • Chakraborty, R. & N. Ryman, 1983. Relationship of mean and variance of genotypic values with heterozygosity per individual in a natural population. Genetics. 103: 149–152.

    CAS  PubMed  Google Scholar 

  • Clarke, G. M., G. W. Brand & M. J. Whitten, 1986. Fluctuating asymmetry: A technique for measuring developmental stress caused by inbreeding. Aust. J. Biol. Sci. 39: 145–153.

    Google Scholar 

  • Clarke, G. M., B. P. Oldroyd & P. L. Hunt, 1992. The genetic basic of developmental stability inApis mellifera: heterozygosity versus genic balance. Evolution 46: 753–762.

    Article  Google Scholar 

  • Clarke, G. M. & J. A. McKenzie, 1987. Developmental stability of insecticide resistant phenotypes in the blowfly: A result of canalizing natural selection. Nature 325: 345–346.

    Article  CAS  Google Scholar 

  • Coelho, J. R. & J. B. Mitton, 1988. Oxygen consumption during hovering is associated with genetic variation of enzymes in honey-bees. Functional Ecology 2: 141–146.

    Google Scholar 

  • Cothran, E. G., R. Chesser, M. H. Smith & P. E. Johns, 1983. Influences of genetic variability and maternal factors on fetal growth in white-tailed deer. Evolution 37: 282–291.

    Article  Google Scholar 

  • Danzmann, R. G., M. M. Ferguson & F. W. Allendorf, 1987. Heterozygosity and oxygen-consumption rate as predictors of growth and developmental rate in rainbow trout. Physiol. Zool. 60: 211–220.

    Google Scholar 

  • Danzmann, R. G., M. M. Ferguson & F. W. Allendorf, 1988. Heterozygosity and components of fitness in a strain of rainbow trout. Biol. J. Linn. Soc. 39: 285–304.

    Google Scholar 

  • Diehl, W. J., 1989. Genetics of carbohydrate metabolism and growth inEisemia foetida (Oligochataea: Lumbricidae). Heredity 61: 379–387.

    Google Scholar 

  • Diehl, W. J., P. M. Gaffney & R. K. Koehn, 1986. Physiological and genetic aspects of growth in the musselMytilus edulis. I. Oxygen consumption, growth, and weight loss. Physiol. Zool. 59: 201–211.

    Google Scholar 

  • Diehl, W. P., P. M. Gaffney, J. H. McDonald & R. K. Koehn, 1985. Relationship between weight standardized oxygen consumption and multiple-locus heterozygosity in the marine musselMytilus edulis L. (Mollusca), pp. 531–536 in Proceedings of the 19th European Marine Biology Symposium, edited by P. Gibbs. Cambridge University Press, Cambridge.

    Google Scholar 

  • DiMichele, L., K. Paynter & D. A. Powers, 1991. Lactate dehydrogenase-B allozymes directly affect development ofFundulus heteroclitus. Science 253: 898–900.

    CAS  PubMed  Google Scholar 

  • DiMichele, L. & D. A. Powers, 1991. Developmental heterochrony and differential mortality in the model teleost,Fundulus heteroclitus. Physiological Zoology 64: 1426–1443.

    CAS  Google Scholar 

  • DiMichele, L. & D. A. Powers, 1982a. Physiological basis for swimming endurance differences between LDH-B genotypes ofFundulus heteroclitus. Science 216: 1014–1016.

    CAS  PubMed  Google Scholar 

  • DiMichele, L. & D. A. Powers, 1982b. LDH-B genotype specific hatching times ofFundulus heteroclitus embryos. Nature 296: 560–563.

    Article  Google Scholar 

  • DiMichele, L. & D. A. Powers, 1984. Developmental and oxygen consumption differences between LDH-B genotypes ofFundulus heteroclitus and their effect on hatching times. Physiol. Zool. 57: 52–56.

    CAS  Google Scholar 

  • Dobzhansky, Th. & B. Wallace, 1953. The genetics of homeostasis inDrosophila. Proc. Natl. Acad. Sci. 39: 162–171.

    PubMed  CAS  Google Scholar 

  • Eanes, W. F., 1978. Morphological variance and enzyme heterozygosity in the monarch butterfly. Nature 276: 263–264.

    Article  Google Scholar 

  • Eanes, W. F., 1981. Enzyme heterozygosity and morphological variance. Nature 290: 609–610.

    Article  Google Scholar 

  • Fleischer, R. C., R. F. Johnston & W. J. Klitz, 1983. Allozymic heterozygosity and morphological variation in house sparrows. Nature 304: 628–630.

    Article  CAS  PubMed  Google Scholar 

  • Garton, D. W., 1984. Relationship between multiple locus heterozygosity and physiological energetics of growth in the estuarine gastropodThais haemastoma. Physiol. Zool. 57: 530–543.

    Google Scholar 

  • Garton, D. W., R. K. Koehn & T. M. Scott, 1984. Multiple-locus heterozygosity and the physiological energetics of growth in the coot clam,Mulinia lateralis, from a natural population. Genetics: 445–455.

  • Gajardo, G. M. & J. A. Beardmore, 1989. Ability to switch reproductive mode inArtemia is related to maternal heterozygosity. Mar. Ecol. Prog. Ser. 55: 191–195.

    Google Scholar 

  • Govindaraju, D. R. & B. P. Dancik, 1987. Allozyme heterozygosity and homeostasis in germinating seeds of jack pine. Heredity 59: 279–283.

    Google Scholar 

  • Hall, J. G. & R. K. Koehn, 1983. The evolution of enzyme catalytic efficiency and adaptive inference from steady-state kinetic data. Evol. Biol. 16: 53–96.

    Google Scholar 

  • Handford, P., 1980. Heterozygosity at enzyme loci and morphological variation. Nature 286: 261–262.

    Article  CAS  PubMed  Google Scholar 

  • Hartl, G. B., G. Lang, F. Klein & R. Willing, 1991. Relationships between allozymes, heterozygosity and morphological characters in red deer (Cervus elaphus), and the influence of selective hunting on allele frequency distributions. Heredity 66: 343–350.

    PubMed  Google Scholar 

  • Hartl, G. B., F. Suchentrunk, R. Willing & R. Petznek, 1993. Allozyme heterozygosity and fluctuating asymmetry in the brown hare (Lepus europaeus): a test of the developmental homeostasis hypothesis. (in preparation).

  • Hawkins, A. J. S., B. L. Bayne & A. J. Day, 1986. Protein turnover, physiological energetics and heterozygosity in the blue musselMytilus edulis: the basis of variable age-specific growth. Proc. R. Soc. Lond. B 229: 161–176.

    Article  CAS  Google Scholar 

  • Hawkins, A. J. S., B. L. Bayne, A. J. Day, J. Rusing & C. M. Worrall, 1989. Genotype-dependent interrelations between energy metabolism, protein metabolism and fitness, pp. 283–292 in Reproduction, Genetics and Distributions of Marine Organisms, edited by J. S. Ryland and P. A. Tyler. Olsen and Olsen, Fredensborg, Denmark.

    Google Scholar 

  • Kasule, F. K. & L. M. Cook, 1988. Phenotypic variability and heterozygosity at an esterase locus in the mosquitoAedus aegypti. Heredity 61: 427–431.

    PubMed  Google Scholar 

  • King, D. P. F., 1985. Enzyme heterozygosity associated with anatomical character variance and growth in the herring (Clupea harengus L.). Heredity 54: 289–296.

    PubMed  Google Scholar 

  • Kobyliansky, E. & G. Livshits, 1985. Differential fertility and morphological constitution of spouses. Z. Morph. Anthrop. 76: 95–105.

    CAS  Google Scholar 

  • Koehn, R. K., 1991. The cost of enzyme synthesis in the genetics of energy balance and physiological performance. Biol. J. Linn. Soc. 44: 231–247.

    Google Scholar 

  • Koehn, R. K. & B. L. Bayne, 1988. Towards a physiological and genetical understanding of the energetics of the stress response. Biol. J. Linn. Soc. 37: 157–171.

    Article  Google Scholar 

  • Koehn, R. K., W. J. Diehl & T. M. Scott, 1988. The differential contribution by individual enzymes of glycolysis and protein catabolism to the relationship between heterozygosity and growth rate in the coot clam,Mulinia lateralis. Genetics 118: 121–130.

    CAS  PubMed  Google Scholar 

  • Koehn, R. K. & P. M. Gaffney, 1984. Genetic heterozygosity and growth rate inMytilus edulis. Mar. Biol. 82: 1–7.

    Article  Google Scholar 

  • Koehn, R. K. & S. E. Shumway, 1982. A genetic/physiological explanation for differential growth rate among individuals of the American oyster,Crassostrea virginica (Gmelin). Mar. Biol. Letters 3: 35–42.

    Google Scholar 

  • Koehn, R. K., A. J. Zera & J. G. Hall, 1983. Enzyme polymorphism and natural selection, pp. 115–136 in Evolution of Genes and Proteins, edited by M. Nei and R. K. Koehn. Sinauer Associates Inc. Sunderland, Mass.

    Google Scholar 

  • Leary, R. F., F. W. Allendorf & K. L. Knudsen, 1983. Developmental stability and enzyme heterozygosity in rainbow trout. Nature 301: 71–72.

    Article  CAS  PubMed  Google Scholar 

  • Leary, R. F., F. W. Allendorf & K. L. Knudsen, 1984. Superior developmental stability of heterozygotes at enzyme loci in salmonid fishes. Amer. Natur. 124: 540–551.

    Article  Google Scholar 

  • Leary, R. F., F. W. Allendorf & K. L. Knudsen, 1985. Inheritance of meristic variation and the evolution of developmental stability in rainbow trout. Evolution 39: 308–314.

    Article  Google Scholar 

  • Lerner, I. M., 1954. Genetic homeostasis. Oliver and Boyd, Edingburgh, 154 pp.

    Google Scholar 

  • Livshits, G. & E. Kobyliansky, 1984. Biochemical heterozygosity as a predictor of developmental homeostasis in man. Ann. Hum. Genet. 48: 173–184.

    PubMed  CAS  Google Scholar 

  • Livshits, G. & E. Kobyliansky, 1985. Lerner's concept of developmental homeostasis and the problem of heterozygosity level in natural populations. Heredity 55: 341–353.

    PubMed  Google Scholar 

  • Makaveev, T., I. Venev & M. Baulov, 1978. Investigations on activity level and polymorphisms of some blood enzyme in farm animals with different growth energy. II. Correlations between homo- and heterozygosity of some protein and enzyme phenotypes and fattening ability and slaughter indices in various breeds of fattened pigs. Genet. Sel. 10: 229–236.

    Google Scholar 

  • McAndrew, B. J., R. D. Ward & J. A. Beardmore, 1982. Lack of relationship between morphological variance and enzyme heterozygosity in the plaice,Pleuronectes platessa. Heredity 48: 117–125.

    CAS  PubMed  Google Scholar 

  • Messier, S. & J. B. Mitton. Heterozygosity at the malate dehydrogenase locus and fluctating asymmetry inApis mellifera. Evolution, in review.

  • Mitton, J. B., 1978. Relationship between heterozygosity for enzyme loci and variation of morphological characters in natural populations. Nature 273: 661–662.

    Article  CAS  PubMed  Google Scholar 

  • Mitton, J. B., 1993. Theory and data pertinent to the relationship between heterozygosity and fitness, in The Natural History of Inbreeding and Outbreeding, edited by W. Shields and N. Thornhill. University of Chicago Press.

  • Mitton, J. B., C. Carey & T. D. Kocher, 1986. The relation of enzyme heterozygosity to standard and active oxygen consumption and body size of tiger salamanders,Ambystoma tigrinum. Physiol. Zool. 59: 574–582.

    CAS  Google Scholar 

  • Mitton, J. B. & M. C. Grant, 1984. Associations among protein heterozygosity, growth rate, and developmental homeostasis. Ann. Rev. Ecol. Syst. 15: 479–499.

    Article  Google Scholar 

  • Mitton, J. B. & R. K. Koehn, 1975. Genetic organization and adaptive response of allozymes to ecological variables inFundulus heteroclitus. Genetics 79: 97–111.

    CAS  PubMed  Google Scholar 

  • Mitton, J. B. & R. K. Koehn, 1985. Shell shape variation in the blue mussel,Mytilus edulis L., and its association with enzyme heterozygosity. J. Exp. Mar. Biol. Ecol. 90: 73–80.

    Article  Google Scholar 

  • Mitton, J. B. & B. A. Pierce, 1980. The distribution of individual heterozygosity in naural populations. Genetics 95: 1043–1054.

    PubMed  Google Scholar 

  • Mukai, T., L. E. Mettler & S. Chigusa, 1971. Linkage disequilibrium in a local population ofDrosophila melanogaster. Proc. Natl. Acad. Sci. USA 68: 1065–1069.

    CAS  PubMed  Google Scholar 

  • Mukai, T. & O. Yamaguchi, 1974. The genetic structure of natural populations ofDrosphila melanogaster. XI. Genetic variability in a local population. Genetics 76: 339–366.

    CAS  PubMed  Google Scholar 

  • Parsons, P. A., 1971. Extreme environment heterosis and genetic loads. Heredity 26: 479–483.

    CAS  PubMed  Google Scholar 

  • Parsons, P. A., 1973. Genetics of resistance to environmental stresses inDrosophila populations. Ann. Rev. Genet. 7: 239–265.

    Article  CAS  PubMed  Google Scholar 

  • Parsons, P. A., 1987. Evolutionary rates under environmental stress. Evolutionary Biology 21: 311–347.

    Google Scholar 

  • Paynter, K. T., l. DiMichele, S. C. Hand & D. A. Powers, 1991. Metabolic implications of LDH-B genotype during early development inFundulus heteroclitus. J. Exp. Zool. 257: 24–33.

    Article  CAS  Google Scholar 

  • Pierce, B. A. & J. B. Mitton, 1982. Allozyme heterozygosity and growth in the tiger salamander,Ambystoma tigrinum. J. Hered. 73: 250–253.

    CAS  PubMed  Google Scholar 

  • Place, A. R. & D. A. Powers, 1979. Genetic variation and relative catalytic efficiencies: LDH-B allozymes ofFundulus heteroclitus. Proc. Natl. Acad. Sci. U.S.A. 76: 2354–2358.

    CAS  PubMed  Google Scholar 

  • Powers, D. A., L. DiMichele & A. R. Place, 1983. The use of enzyme kinetics to predict differences in cellular metabolism, developmental rate, and swimming performance between LDH-B genotypes of the fish,Fundulus heteroclitus, in Isozymes: Current Topics in Biological and Medical Research. Volume 10, edited by G. Whitt and G. C. Markert. Academic Press, New York.

    Google Scholar 

  • Powers, D. A., G. S. Greaney & A. R. Place, 1979. Physiological correlation between lactate dehydrogenase genotype and haemoglobin function in killifish. Nature 277: 240–241.

    Article  CAS  PubMed  Google Scholar 

  • Powers, D. A. & A. R. Place, 1978. Biochemical genetics ofFundulus heteroclitus (L.). I. Temporal and spatial variation in gene frequencies of Ldh-B, Mdh-A, Gpi-B, and Pgm-A. Biochem. Genet. 16: 593–607.

    Article  CAS  PubMed  Google Scholar 

  • Prakash, S., 1974. Gene differences between the Sex Ratio and Standard gene arrangements of the X chromosome and linkage disequilibrium between the Standard gene arrangements and the X chromosome inDrosophila pseudoobscura. Genetics 77: 795–804.

    CAS  PubMed  Google Scholar 

  • Prakash, S. & R. C. Lewontin, 1968. A molecular approach to the study of genic heterozygosity in natural populations. III. Direct evidence of coadaptation in gene arrangements ofDrosophila. Proc. Natl. Acad. Sci. U. S. A. 59: 398–450?

    CAS  PubMed  Google Scholar 

  • Prakash, S. & R. C. Lewontin, 1971. A molecular approach to the study of genic heterozygosity in natural populations. V. Further direct evidence of coadaptations in inversions ofDrosophila. Genetics 69: 405–408.

    CAS  PubMed  Google Scholar 

  • Prakash, S. & R. B. Merritt, 1972. Direct evidence of genic differentiation between Sex Ratio and Standard gene arrangements of X chromosome inDrosophila pseudoobscura. Genetics 72: 169–175.

    CAS  PubMed  Google Scholar 

  • Policansky, D. & E. Zouros, 1977. Gene differences between the sex ratio and standard gene arrangements on the X chromosome inDrosophila persimilis. Genetics 85: 507–511.

    PubMed  Google Scholar 

  • Powers, D. A., M. Smith, I. Gonzalez-Villasenor, L. DiMichele, D. Crawford, G. Bernardi & T. Lauerman, 1993. A multidisciplinary approach to the selectionist/neutralist controversy using the model teleostFundulus heteroclitus. Oxford Surveys in Evolutionary Biology, Oxford University Press.

  • Quattro, J. M. & R. C. Vrijenhoek, 1989. Fitness differences among remnant populations of the endangered sonoran topminnow. Science 245: 976–978.

    CAS  PubMed  Google Scholar 

  • Robertson, F. W. & E. C. Reeve, 1952. Heterozygosity, environmental variation and heterosis. Nature 170: 286–287.

    CAS  PubMed  Google Scholar 

  • Rodhouse, P. G. & P. M. Gaffney, 1984. Effect of heterozygosity on metabolism during starvation in the American oyster,Crassostrea virginica. Mar. Biol. 80: 179–188.

    Article  CAS  Google Scholar 

  • Rodhouse, P. G., J. H. McDonald, R. I. E. Newell & R. K. Koehn, 1986. Gamete production, somatic growth and multiple locus heterozygosity inMytilus edulis L. Mar. Biol. 90': 209–214.

    Article  Google Scholar 

  • Rogers, S., R. Wells & M. Rechsteiner, 1986. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234: 364–368.

    CAS  PubMed  Google Scholar 

  • Scott, T. M. & R. K. Koehn, 1990. The effect of environmental stress on the relationship of heterozygosity to growth rate in the coot clamMulinia lateralis (Say). J. Exp. Mar. Biol. Ecol., 135: 109–116.

    Article  Google Scholar 

  • Scribner, K. T., M. H. Smith & P. E. Johns, 1989. Environmental and genetic components of antler growth in white-tailed deer. J. Mamm. 70: 284–291.

    Google Scholar 

  • Scribner, K. T. & M. H. Smith, 1990. Genetic variability and antler development, pp 460–473 in Horns, Pronghorns, and Antlers, edited by G. A. Bubenik and A. B. Bubenik. Springer, New York.

    Google Scholar 

  • Serradilla, J. M. & F. J. Ayala, 1983. Alloprocoptic selection: A mode of natural selection promoting polymorphism. Proc. Natl. Acad. Sci. USA 80: 2022–2025.

    PubMed  Google Scholar 

  • Singh, S. M. & E. Zouros, 1978. Genetic variation associated with growth rate in the American oyster (Crassostrea virginica). Evolution 32: 342–353.

    Article  Google Scholar 

  • Smith, M. H., K. T. Scribner, P. E. Johns & O. E. Rhodes, Jr., 1991. Genetics and Antler development. Proc. 18th Congr. Internat. Union Game Biol., Krakow, Poland.

    Google Scholar 

  • Soulé, M. E., 1967. Phenetics of natural populations. II. Asymmetry and evolution in a lizard. Amer. Natur. 101: 141–160.

    Article  Google Scholar 

  • Soulé, M. E., 1971. The variation problem: the gene-flow-variation hypothesis. Taxon 20: 37–50.

    Article  Google Scholar 

  • Soulé, M. E., 1979. Heterozygosity and developmental stability: another look. Evolution 33: 396–401.

    Article  Google Scholar 

  • Soulé, M. E., 1982. Allomeric variation. 1. The theory and some consequences. Amer. Natur. 120: 751–764.

    Article  Google Scholar 

  • Soulé, M. E. & S. Y. Yang, 1974. Genetic variation side-blotched lizards on islands in the Gulf of California. Evolution 27: 593–600.

    Article  Google Scholar 

  • Strauss, R. E., 1989. Associations between genetic heterozygosity and morphological variability in freshwater sculpins, genusCottus (Teleostei: Cottidae). Biochem. Syst. Ecol. 17: 333–340.

    Article  Google Scholar 

  • Strauss, R. E., 1991. Correlations between heterozygosity and phenotypic variability inCottus (Teleostei: Cottidae): character components. Evolution 45: 1950–1956.

    Article  Google Scholar 

  • Teska, W. R. M. H. Smith & J. M. Novak, 1990. Food quality, heterozygosity, and fitness correlates inPeromyscus polionotus. Evolution 44: 1318–1325.

    Article  Google Scholar 

  • Van Valen, L., 1978. The statistics of variation. Evol. Theory 4: 33–43.

    Google Scholar 

  • Vrijenhoek, R. C. & S. Lerman, 1982. Heterozygosity and developmental stability under sexual and asexual breeding systems. Evolution 36: 768–767.

    Article  Google Scholar 

  • Ward, R. D., M Sarfarazi, C. Azimi-Garakani & J. A. Beardmore, 1985. Population genetics of polymorphisms in Cardiff newborn: Relationship betwene blood group and allozyme heterozygosity and birth weight. Hum. Hered. 35: 171–177.

    Article  CAS  PubMed  Google Scholar 

  • Watt, W. B., 1985. Bieonergetics and evolutionary genetics: opportunities for new synthesis. Amer. Natur. 125: 118–143.

    Article  CAS  Google Scholar 

  • Watt, W. B., 1986. Power and efficiency as indexes of fitness in matabolic organization. Amer. Natur. 127: 629–653.

    Article  CAS  Google Scholar 

  • Watt, W. B., 1992. Eggs, enzymes, and evolution-natural genetic variants change insect fecundity. Proc. Natl. Acad. Sci. USA 89: 10608–10612.

    CAS  PubMed  Google Scholar 

  • Wooten, M. C. & M. H. Smith, 1986. Fluctuating asymmetry and genetic variability in a natural population ofMus musculus. J. Mammalogy 67: 725–732.

    Google Scholar 

  • Yezerinac, S. M., S. C. Lougheed & P. Handford, 1992. Morphological variability and enzyme heterozygosity: individual and population level correlations. Evolution 46: 1959–1964.

    Article  Google Scholar 

  • Zouros, E. & D. W. Foltz, 1987. The use of allelic isozyme variation for the study of heterosis, pp 2–59 in Isozymes: Current Topics in Biological and Medical research, Volume 13, edited by M. C. Rattazzi, J. G. Scandalios and G. S. Whitt. Alan R. Liss, Inc., New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitton, J.B. Enzyme heterozygosity, metabolism, and developmental stability. Genetica 89, 47–65 (1993). https://doi.org/10.1007/BF02424505

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02424505

Key words

Navigation