Skip to main content
Log in

Thin film cracking modulated by underlayer creep

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

In devices that integrate dissimilar materials in small dimensions, crack extension in one material often accompanies inelastic deformation in another. In this paper we analyze a channel crack advancing in an elastic film, while an underlayer creeps. The film is subject to a tensile stress. As the underlayer creeps, the stress field in the film relaxes in the crack wake, and intensifies around the crack tip. In a blanket film, the crack can attain a steady velocity, set by two rate processes: subcritical decohesion at the crack tip, and creep in the underlayer. In a thin-film microbridge over a viscous stripe, the crack cannot grow when the bridge is short, and can grow at a steady velocity when the bridge is long. We use a two-dimensional shear lag model to approximate the three-dimensional fracture process, and an extended finite element method to simulate the moving crack with an invariant, relatively coarse mesh. On the basis of the theoretical findings, we propose new experiments to measure fracture toughness and creep laws in small structures. As a byproduct, an analytical formula is found for the growth rate per temperature cycle of a channel crack in a brittle film, induced by ratcheting plastic deformation in a metal underlayer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.D. Thouless, “Cracking and Delamination of Coatings,”J. Vac. Sci. Technol. A,9,2510–2515 (1991).

    Article  Google Scholar 

  2. Hutchinson, J.W. andSuo, Z., “Mixed-mode Cracking in Layered Materials,”Advances in Applied Mechanics,29,63–191 (1992).

    Google Scholar 

  3. Evans, A.G. andHutchinson, J.W., “The Thermomechanical Integrity of Thin Films and Multilayers,”Acta Metall. Mater.,43,2507–2530 (1995).

    Google Scholar 

  4. Cook, R.F. andSuo, Z., “Mechanisms Active during Fracture under Constraint,”MRS Bulletin,27,45–51 (2002).

    Google Scholar 

  5. Suo, Z., “Reliability of Interconnect Structures.” A Manuscript prepared as a chapter in Volume 8: Interfacial and Nanoscale Failure, W. Gerberich and W. Yang, eds., Comprehensive Structural Integrity, I. Milne, R.O. Ritchie, and B. Karihaloo, editors-in-Chief. Due for publication early 2003. (Preprint available online at http://www.princeton.edu/∼suo, Publication 139.)

  6. Kook, S.-Y. andDauskardt, R.H., “Moisture-assisted Subcritical Debonding of a Polymer/Metal Interface,”J. Appl. Phys.,91,1293–1303 (2002).

    Article  Google Scholar 

  7. Soboyejo, W.O., Wang, R., Katsube, N., Seghi, R., Pagedas, C., Skraba, P., Mumm, D.R., andEvans, A.G., “Contact Damage of Model Dental Multilayers: Experiments and Finite Element Simulations,”Key Engineering Materials,198–199,135–178 (2001).

    Google Scholar 

  8. Kahn, H., Heuer, A.H., andBallarini, R., “On-chip Testing of Mechanical Properties of MEMS Devices,”MRS Bulletin,26,300–301 (2001).

    Google Scholar 

  9. Muhlstein, C.L., Stach, E.A., andRitchie, R.O., “Mechanism of Fatigue in Micron-scale Films of Polycrystalline Silicon for Microelectromechanical Systems,”Appl. Phys. Lett.,80,1532–1534 (2002).

    Article  Google Scholar 

  10. Evans, A.G., Mumm, D.R., Hutchinson, J.W., Meier, G.H., andPettit, F.S., “Mechanisms Controlling the Durability of Thermal Barrier Coatings,”Progress in Materials Science,46,505–553 (2001).

    Google Scholar 

  11. Huang, M., Suo, Z., Ma, Q., andFujimoto, H., “Thin Film Cracking and Ratcheting Caused by Temperature Cycling,”J. Mater. Res.,15,1239–1242 (2000).

    Google Scholar 

  12. Huang, M., Suo, Z., andMa, Q., “Plastic Ratcheting Induced Cracks in Thin Film Structures,”J. Mech. Phys. Solids,50,1079–1098 (2002).

    Google Scholar 

  13. Begley, M.R. andEvans, A.G., “Progressive Cracking of a Multilayer System upon Thermal Cycling,”J. Appl. Mech.,68,513–520 (2001).

    Article  Google Scholar 

  14. He, M.Y., Evans, A.G., andHutchinson, J.W., “The Ratcheting of Compressed Thermally Grown Thin Films on Ductile Substrates,”Acta Mater.,48,2593–2601 (2000).

    Article  Google Scholar 

  15. Karlsson, A.M. andEvans, A.G., “A Numerical Model for the Cyclic Instability of Thermally Grown Oxides in Thermal Barrier Systems,”Acta Mater.,49,1793–1804 (2001).

    Article  Google Scholar 

  16. Beuth, J.L., “Cracking of Thin Bonded Films in Residual Tension,”Int. J. Solids Structures,29,1657–1675 (1992).

    Article  Google Scholar 

  17. Ye, T., Suo, Z., andEvans, A.G., “Thin Film Cracking and the Roles of Substrate and Interface,”Int. J. Solids Structures,29,2639–2648 (1992).

    Article  Google Scholar 

  18. Hu, M.S. andEvans, A.G., “The Cracking and Decohesion of Thin Films on Ductile Substrates,”Acta Metall.,37,917–925 (1989).

    Google Scholar 

  19. Beuth, J.L. andKlingbeil, N.W., “Cracking of Thin Films Bonded to Elastic-plastic Substrates,”J. Mech. Phys. Solids,44,1411–1428 (1996).

    Google Scholar 

  20. Leterrier, Y., Boogh, L., Andersons, J. andMansons, J-A. E., “Adhesion of Silicon Oxide Layers on Poly(ethylene-terephthalate) I: Effect of Substrate Properties on Coatings Fragmentation Process,”J. Polym. Sci. Part B. Polm. Phys.,35,1449–1461 (1997).

    Google Scholar 

  21. Hobart, K.D., Kub, F.J., Fatemi, M., Twigg, M.E., Thompson, P.E., Kuan, T.S., andInoki, C.K., “Compliant Substrates: A Comprehensive Study of the Relaxation Mechanisms of Strained Films Bonded to High and Low Viscosity Oxides,”J. Electron. Mater.,29,897–900 (2000).

    Google Scholar 

  22. Yin, H., Huang, R., Hobart, K.D., Suo, Z., Kuan, T.S., Inoki, C.K., Shieh, S.R., Duffy, T.S., Kub, F.J., andSturm, J.C., “Strain Relaxation of SiGe Islands on Compliant Oxide,”J. Appl. Phys.,91,9716–9722 (2002).

    Google Scholar 

  23. Wagner, H.S., Gleskova, H., Sturm, J.C., andSuo, Z., “Novel Processing Technology for Macroelectronics,”in Technology and Applications of Amorphous Silicon, R.A. Street, ed., pp.222–251, Springer, Berlin (2000).

    Google Scholar 

  24. Sikder, A.K., Irfan, I.M., Kumar, A., andAnthony, J.M., “Nano-Indentation Studies of Xerogel and Silk Low-k Dielectric Materials,”J. Electron. Mater.,30,1527–1531 (2001).

    Google Scholar 

  25. Toivola, Y., Thurn, J., Cook, R.F., “Structural, Electrical, and Mechanical Properties Development During Curing Of Low-k Hydrogen Silsesquioxane Films,”J. Electrochem. Soc.,149,F9-F17 (2002).

    Article  Google Scholar 

  26. Huang, R., Prévost, J.H., andSuo, Z., “Loss of Constraint on Fracture in Thin Film Structures Due to Creep,”Acta Mater.,50,4137–4148 (2002).

    Article  Google Scholar 

  27. Freund, L.B. and Nix, W.D., unpublished work.

  28. Moran, P.D. andKuech, T.F., “Kinetics of Strain Relaxation in Semiconductor Films Grown on Borosilicate Glass-bonded Substrates,”J. Electron. Mater.,30,802–806 (2001).

    Google Scholar 

  29. Huang, R., Yin, H., Liang, J., Hobart, K.D., Sturm, J.C., andSuo, Z., “Relaxation of a Strained Elastic Island on a Viscous Layer,”Mater. Res. Soc. Symp. Proc.,695,115–120 (2001).

    Google Scholar 

  30. Dmowska, R. andRice, J.R., “Fracture Theory and Its Seismological Applications,”in Continuum Theories in Solid Earth Physics, R. Teisseyre, ed., Physics and Evolution of the Earth's Interiol, Vol. 3, pp.187–255, Elsevier, Oxford (1986).

    Google Scholar 

  31. Freund, L.B., Dynamic Fracture Mechanics, Cambridge University Press (1990).

  32. Nix, W.D., “Mechanical Properties of Thin Films,”Metall. Trans. A,20,2217–2245 (1989).

    Google Scholar 

  33. Baker, S.P., Kretschmann, A., andArzt, E., “Thermomechanical Behavior of Different Texture Components in Cu Thin Films,”Acta Mater.,49,2145–2160 (2001).

    Article  Google Scholar 

  34. Belytschko, T. andBlack T., “Elastic Crack Growth in Finite Elements with Minimal Remeshing,”Int. J. Numer. Methods Eng.,45,601–620 (1999).

    Article  MathSciNet  Google Scholar 

  35. Moës, N., Dolbow, J., andBelytschko, T., “A Finite Element Method for Crack Growth without Remeshing,”Int. J. Numer. Methods Eng.,46,131–150 (1999).

    Article  Google Scholar 

  36. Daux, C., Moës, N., Dolbow, J., Sukumar, N., andBelytschko, T., “Arbitrary Branched and Intersecting Cracks with the Extended Finite Element Method,”Int. J. Numer. Methods Eng.,48,1741–1760 (2000).

    Article  Google Scholar 

  37. Sukumar, N., Srolovitz, D.J., Baker, T.J., and Prévost, J.H., “Brittle Fracture in Polycrystalline Microstructures with the Extended Finite Element Method,” Int. J. Numer. Methods Eng., in press.

  38. Prévost, J.H., “DYNAFLOW: A Nonlinear Transient Finite Element Analysis Program,” Princeton University (1981). Last updated in 2002.

  39. Rice, J.R., “A Path Independent Integral and Approximate Analysis of Strain Concentration by Notches and Cracks,”J. Appl. Mech.,35,379–386 (1968).

    Google Scholar 

  40. Irwin, G. R., “Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate,”J. Appl. Mech.,24,361–364 (1957).

    Google Scholar 

  41. Huang, H.B. andSpaepen, F., “Tensile Testing of Free-standing Cu, Ag and Al Thin Films and Ag/Cu Multilayers,”Acta Mater.,48,3261–3269 (2000).

    Google Scholar 

  42. LaVan D.A., Sharpe, W.N., “Tensile Testing of Microsamples,” EXPERIMENTAL MECHANICS,39,210–216 (1999).

    Article  Google Scholar 

  43. Kraft, O. andVolkert, C.A., “Mechanical Testing of Thin Films and Small Structures,”Adv. Eng. Mater.,3 (3),99–110 (2001).

    Article  Google Scholar 

  44. Vinci, R.P., Baker, S.P., eds., “Mechanical Properties in Small Dimensions,” MRS Bulletin,27,12–53 (2002).

  45. Ma, Q., Xie, J., Chao, S., El-Mansy, S., McFadden, R., andFujimoto, H., “Channel Cracking Technique for Toughness Measurement of Brittle Dielectric Thin Films on Silicon Substrates,”Mater. Res. Soc. Symp. Proc. 516,331–336 (1998).

    Google Scholar 

  46. Lawn, B., Fracture of Brittle Solids, 2nd edition, Cambridge University Press (1993).

  47. Suresh, S., Fatigue of Materials, 2nd edition, Cambridge University Press (1998).

  48. Lehner, F.K., Li, V.C., andRice, J.R., “Stress Diffusion Along Rupture Plate Boundaries,”Journal of Geophysical Research,86,6155–6169 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, J., Huang, R., Prévost, J.H. et al. Thin film cracking modulated by underlayer creep. Experimental Mechanics 43, 269–279 (2003). https://doi.org/10.1007/BF02410525

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02410525

Key Words

Navigation