Skip to main content
Log in

Modulating crack propagation in a multilayer stack with a super-layer

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Quantitative characterization of interface adhesion and fracture properties of thin film materials is of fundamental and technological interests in modern technologies. Sandwich beam specimens used in fracture mechanics techniques, such as four-point bending and double-cantilever beam have been widely adopted, including the semiconductor industry. In this work, we highlight some of the challenges that these techniques are facing in characterizing ever thinner films and tough interfaces, and propose a simple strategy to address these challenges by engineering the stack structure of the specimen. We show that crack propagation in a multilayer stack can be controlled using a super-layer (SL) structure, and the dependence of the cracking behavior on the thickness and mechanical properties of the SL is studied. The effectiveness of the SL strategy is demonstrated for a range of technologically important material systems used in the on-chip interconnects of modern microprocessors, which represents one promising path to extend the industry-standard techniques to meet future characterization needs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4

Similar content being viewed by others

References

  1. D. Ingerly, S. Agraharam, D. Becher, V. Chikarmane, K. Fischer, R. Grover, M. Goodner, S. Haight, J. He, T. Ibrahim, S. Joshi, H. Kothari, K. Lee, Y. Lin, C. Litteken, H. Liu, E. Mays, P. Moon, T. Mule, S. Nolen, N. Patel, S. Pradhan, J. Robinson, P. Ramanarayanan, S. Sattiraju, T. Schroeder, S. Williams, and P. Yashar: Low-k interconnect stack with thick metal 9 redistribution layer and Cu die bump for 45 nm high volume manufacturing. In International Interconnect Technology Conference, 2008. (IEEE, Burlingame, CA, 2008); p. 216.

    Chapter  Google Scholar 

  2. D. Ingerly, A. Agrawal, R. Ascazubi, A. Blattner, M. Buehler, V. Chikarmane, B. Choudhury, F. Cinnor, C. Ege, C. Ganpule, T. Glassman, R. Grover, P. Hentges, J. Hicks, D. Jones, A. Kandas, H. Khan, N. Lazo, K.S. Lee, H. Liu, A. Madhavan, R. McFadden, T. Mule, D. Parsons, P. Parthangal, S. Rangaraj, D. Rao, J. Roesler, A. Schmitz, M. Sharma, J. Shin, Y. Shusterman, N. Speer, P. Tiwari, G. Wang, P. Yashar, and K. Mistry: Low-k interconnect stack with metal-insulator-metal capacitors for 22 nm high volume manufacturing. In IEEE International Interconnect Technology Conference (IITC), 2012. (IEEE, San Jose, CA 2012); p. 1.

    Google Scholar 

  3. R. Borkar, M. Bohr, and S. Jourdan: Advancing Moore’s Law in 2014 (Intel Corporation, 2014).

  4. G. Wang, P.S. Ho, and S. Groothuis: Chip-packaging interaction: A critical concern for Cu/low k packaging. Microelectron. Reliab. 45(7–8), 1079 (2005).

    Article  CAS  Google Scholar 

  5. C. Odegard, C. Tz-Cheng, C. Hartfield, and V. Sundararaman: Dielectric integrity test for flip-chip devices with Cu/low-k interconnects. In Proceedings of the 55th Electronic Components and Technology Conference, 2005. (IEEE, Lake Buena Vista, FL, 2005); p. 1163.

    Google Scholar 

  6. C.J. Zhai, U. Ozkan, A. Dubey, Sidharth, R.C. Blish, and R.N. Master: Investigation of Cu/low-k film delamination in flip chip packages. In Proceedings of the 56th Electronic Components and Technology Conference, 2006. (IEEE, San Diego, CA, 2006); 9 pp.

    Google Scholar 

  7. X.H. Liu, T.M. Shaw, M.W. Lane, E.G. Liniger, B.W. Herbst, and D.L. Questad: Chip-package-interaction modeling of ultra low-k/copper back end of line. In IEEE International Interconnect Technology Conference, 2007. (IEEE, Burlingame, CA, 2007); p. 13.

    Chapter  Google Scholar 

  8. H. Li, T.M. Shaw, X-H. Liu, and G. Bonilla: Delayed mechanical failure of the under-bump interconnects by bump shearing. J. Appl. Phys. 111(8), 083503 (2012).

    Article  Google Scholar 

  9. H. Li, T.Y. Tsui, and J.J. Vlassak: Water diffusion and fracture behavior in nanoporous low-k dielectric film stacks. J. Appl. Phys. 106(3), 033503 (2009).

    Article  Google Scholar 

  10. M. Lane, E. Liniger, and J. Lloyd: Relationship between interfacial adhesion and electromigration in Cu metallization. J. Appl. Phys. 93(3), 1417 (2003).

    Article  CAS  Google Scholar 

  11. Y. Zhou, T. Scherban, G. Xu, J. He, B. Miner, C.H. Jan, A. Ott, J. O’Loughlin, D. Ingerly, and J. Leu: Impact of interfacial chemistry on adhesion and electromigration in Cu interconnects. In Advanced Metallization Conference (AMC). (Materials Research Society, Warrendale, PA, 2004); p. 189.

    Google Scholar 

  12. J.R. Greer and J.T.M. De Hosson: Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog. Mater. Sci. 56(6), 654 (2011).

    Article  CAS  Google Scholar 

  13. Z. Wu, Y-W. Zhang, M.H. Jhon, H. Gao, and D.J. Srolovitz: Nanowire failure: Long = brittle and short = ductile. Nano Lett. 12(2), 910 (2012).

    Article  CAS  Google Scholar 

  14. O. Kraft, P.A. Gruber, R. Mönig, and D. Weygand: Plasticity in confined dimensions. Annu. Rev. Mater. Res. 40(1), 293 (2010).

    Article  CAS  Google Scholar 

  15. M.D. Uchic, D.M. Dimiduk, J.N. Florando, and W.D. Nix: Sample dimensions influence strength and crystal plasticity. Science 305(5686), 986 (2004).

    Article  CAS  Google Scholar 

  16. H. Hirakata, O. Nishijima, N. Fukuhara, T. Kondo, A. Yonezu, and K. Minoshima: Size effect on fracture toughness of freestanding copper nano-films. Mater. Sci. Eng., A 528(28), 8120 (2011).

    Article  CAS  Google Scholar 

  17. H. Hosokawa, A.V. Desai, and M.A. Haque: Plane stress fracture toughness of freestanding nanoscale thin films. Thin Solid Films 516(18), 6444 (2008).

    Article  CAS  Google Scholar 

  18. J.W. Hutchinson and Z. Suo: Mixed mode cracking in layered materials. Adv. Appl. Mech. 29, 63 (1991).

    Article  Google Scholar 

  19. A. Evans and J. Hutchinson: The thermomechanical integrity of thin films and multilayers. Acta Metall. Mater. 43(7), 2507 (1995).

    Article  CAS  Google Scholar 

  20. A. Volinsky, N. Moody, and W. Gerberich: Interfacial toughness measurements for thin films on substrates. Acta Mater. 50(3), 441 (2002).

    Article  CAS  Google Scholar 

  21. A.A. Volinsky, N.R. Moody, and W.W. Gerberich: Superlayer residual stress effect on the indentation adhesion measurements. In MRS Proceedings, Vol. 594. (Materials Research Society, Warrendale, PA, 1999); p. 383.

    Google Scholar 

  22. A. Bagchi, G. Lucas, Z. Suo, and A. Evans: A new procedure for measuring the decohesion energy for thin ductile films on substrates. J. Mater. Res. 9(07), 1734 (1994).

    Article  CAS  Google Scholar 

  23. R.P. Birringer, P.J. Chidester, and R.H. Dauskardt: High yield four-point bend thin film adhesion testing techniques. Eng. Fract. Mech. 78(12), 2390 (2011).

    Article  Google Scholar 

  24. Q. Ma: A four-point bending technique for studying subcritical crack growth in thin films and at interfaces. J. Mater. Res. 12(03), 840 (1997).

    Article  CAS  Google Scholar 

  25. H. Li, M.J. Kobrinsky, A. Shariq, J. Richards, J. Liu, and M. Kuhn: Controlled fracture of Cu/ultralow-k interconnects. Appl. Phys. Lett. 103(23), 231901–1–231901–5 (2013).

    Article  Google Scholar 

  26. T. Scherban, G. Xu, C. Merrill, C. Litteken, and B. Sun: Fracture of low-k dielectric films and interfaces. In AIP Conference Proceedings, Vol. 817. (American Institute of Physics Publishing LLC, Dresden, Germany, 2006); 2006; p. 83.

    Chapter  Google Scholar 

  27. M. Kanninen: An augmented double cantilever beam model for studying crack propagation and arrest. Int. J. Fract. 9(1), 83 (1973).

    Google Scholar 

  28. C.H. Hsueh, W.H. Tuan, and W.C.J. Wei: Analyses of steady-state interface fracture of elastic multilayered beams under four-point bending. Scr. Mater. 60(8), 721 (2009).

    Article  CAS  Google Scholar 

  29. R. Dauskardt, M. Lane, Q. Ma, and N. Krishna: Adhesion and debonding of multi-layer thin film structures. Engineering Fracture Mechanics 61(1), 141 (1998).

    Article  Google Scholar 

  30. H-H. Kausch and J.G. Williams: Fracture. In Encyclopedia of Polymer Science and Technology. (John Wiley & Sons, Inc., Hoboken, NJ, 2002).

    Google Scholar 

  31. M. Hauschildt, B. Hintze, M. Gall, F. Koschinsky, A. Preusse, T. Bolom, M. Nopper, A. Beyer, O. Aubel, and G. Talut: Advanced metallization concepts and impact on reliability. Jpn. J. Appl. Phys. 53(5S2), 05GA11 (2014).

    Article  Google Scholar 

  32. C.J. Jezewski, J.S. Clarke, T.K. Indukuri, F. Gstrein, and D.J. Zierath: Cobalt Based Interconnects and Methods of Fabrication Thereof (Google Patents, Alexandria, VA, 2012).

    Google Scholar 

  33. C. Yang, F. Baumann, P-C. Wang, S. Lee, P. Ma, J. AuBuchon, and D. Edelstein: Characterization of copper electromigration dependence on selective chemical vapor deposited cobalt capping layer thickness. IEEE Electron Device Lett. 32(4), 560 (2011).

    Article  CAS  Google Scholar 

  34. M.Y. He, A.G. Evans, and J.W. Hutchinson: Crack deflection at an interface between dissimilar elastic materials: Role of residual stresses. Int. J. Solids Struct. 31(24), 3443 (1994).

    Article  Google Scholar 

  35. H. Ming-Yuan and J.W. Hutchinson: Crack deflection at an interface between dissimilar elastic materials. Int. J. Solids Struct. 25(9), 1053 (1989).

    Article  Google Scholar 

  36. Z. Zhang and Z. Suo: Split singularities and the competition between crack penetration and debond at a bimaterial interface. Int. J. Solids Struct. 44(13), 4559 (2007).

    Article  Google Scholar 

  37. S. Roham and T. Hight: Role of residual stress on crack penetration and deflection at a bimaterial interface in a 4-point bend test. Microelectron. Eng. 84(1), 72 (2007).

    Article  CAS  Google Scholar 

  38. J. Hutchinson and A. Evans: Mechanics of materials: Top-down approaches to fracture. Acta Mater. 48(1), 125 (2000).

    Article  CAS  Google Scholar 

  39. M. Lane, R.H. Dauskardt, A. Vainchtein, and H. Gao: Plasticity contributions to interface adhesion in thin-film interconnect structures. J. Mater. Res. 15(12), 2758 (2000).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

H.L. acknowledges Portland Technology Development of Intel Corporation for supporting test wafers. Special thanks go to Jimmy Liu of Intel Corporation for 4PB and DCB testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Iqbal, A. & Brooks, J.D. Modulating crack propagation in a multilayer stack with a super-layer. Journal of Materials Research 30, 3065–3070 (2015). https://doi.org/10.1557/jmr.2015.252

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.252

Navigation