Skip to main content
Log in

Recovery processes in lotic ecosystems: Limits of successional theory

  • Section 5: Theoretical Bases For Defining And Predicting Lotic Community Recovery
  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

The concept of succession has a distinguished history in general ecology and has been applied to stream ecosystems with some success. Succession in streams is largely secondary, follows initial floristics models, and occurs through a variety of mechanisms. The process is moderately predictable but is highly influenced by “climatic” factors, particularly nutrient chemistry. In desert streams, succession does not result in a climax state. While evidence is slim, succession may not be a significant process in streams of certain types or in certain regions.

Successional theory is difficult to apply in spatially heterogeneous, hierarchically organized ecosystems. It also suffers in being only one component of a better integrated concept, that of ecosystem stability, which deals more directly with disturbance and ecosystem resistance in addition to resilience (which encompasses succession). Succession has so suffered from a half century of confusion that a strong case can be made for abandoning the term, at least as it applies in streams, in favor of the broader view provided by stability theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Anderson, T. W., and L. A. Goodman. 1957. Statistical inference about Markov chains.Annals of Mathematical Statistics 28:89–110.

    Google Scholar 

  • Biggs, B. J. F. 1988. Algal proliferations in New Zealand's shallow stony foothills-fed rivers: toward a predictive model.Internationale Vereinigung für Theoretische und Angewandt Limnologie, Verhandlungen 23:1405–1411.

    Google Scholar 

  • Blum, J. L. 1956. The application of the climax concept to algal communities of streams.Ecology 37:603–604.

    Article  Google Scholar 

  • Boulton, A. J., and P. J. Suter. 1986. Ecology of temporary streams—an Australian perspective. Pages 313–327in P. DeDeckker and W. D. Williams (eds.), Limnology in Australia CSIRO/Junk Publishers, Melbourne.

    Google Scholar 

  • Busch, D. E. 1979. The patchiness of diatom distribution in a desert stream.Journal of the Arizona-Nevada Academy of Science 14:43–46.

    Google Scholar 

  • Butcher, R. W. 1947. Studies in the ecology of rivers. VII. The algae of organically enriched water.Journal of Ecology 35:186–191.

    Google Scholar 

  • Cattaneo, A., S. Ghittori, and V. Vendegna. 1975. The development of benthonic phytocoenosis on artificial substrates in the Ticino River.Oecologia (Berlin) 19:315–327.

    Google Scholar 

  • Clements, F. E. 1916. Plant succession: an analysis of the development of vegetation. Publ. 424. Carnegie Institute, Washington, DC.

    Google Scholar 

  • Clements, F. E. 1936. Nature and structure of the climax.Journal of Ecology 24:552–584.

    Google Scholar 

  • Connell, J. H., and R. O. Slatyer. 1977. Mechanisms of succession in natural communities and their role in community stability and organization.American Naturalist 111:1119–1144.

    Article  Google Scholar 

  • Cowles, H. C. 1901. The physiographic ecology of Chicago and vicinity: a study of the origin, development, and classification of plant societies.Botanical Gazette 31:73–108.

    Article  Google Scholar 

  • Dimond, J. B. 1967. Pesticides and stream insects. Bulletin 23. Maine Forest Service. 21 pp.

  • Drury, W. H., and I. C. T. Nisbet. 1973. Succession.Journal of the Arnold Arboretum 54:331–368.

    Google Scholar 

  • Egler, F. E. 1954. Vegetation science concepts I. Initial floristics composition, a factor in old field vegetation development.Vegatatio 4:412–417.

    Article  Google Scholar 

  • Finegan, B. 1984. Forest succession.Nature 312:109–114.

    Google Scholar 

  • Fisher, S. G. 1983. Succession in streams. Pages 7–27in J. R. Barnes and G. W. Minshall (eds.), Stream ecology: application and testing of general ecological theory. Plenum Press, New York. 399 pp.

    Google Scholar 

  • Fisher, S. G., L. J. Gray, N. B. Grimm, and D. E. Busch. 1982. Temporal succession in a desert stream following flash flooding.Ecological Monographs 52:93–110.

    Article  CAS  Google Scholar 

  • Fisher, S. G., and L. J. Gray. 1983. Secondary production and organic matter processing by collector macroinvertebrates in a desert stream.Ecology 64:1217–1224.

    Article  Google Scholar 

  • Fisher, S. G., and N. B. Grimm. 1988. Disturbance as a determinant of structure in a Sonoran desert stream.Internationale Vereinigung für Theoretische und Angewandt Limnologie, Verhandlungen 23:1183–1189.

    Google Scholar 

  • Fisher, S. G., H. M. Valett, N. B. Grimm and E. H. Stanley. 1988. Disturbance and the hyporheic zone: influence on stream ecosystem metabolism.Bulletin of the North American Benthological Society 5:96.

    Google Scholar 

  • Frissell, C. A., W. J. Liss, C. E. Warren and M. D. Hurley. 1986. A hierarchical framework for stream habitat classification: viewing streams in a watershed context.Environmental Management 10:199–214.

    Article  Google Scholar 

  • Gleason, H. A. 1926. The individualistic concept of the plant association.Bulletin of the Torrey Botanical Club 44:1–20.

    Google Scholar 

  • Gray, L. J. 1980. Recolonization pathways and community development of desert stream macroinvertebrates. PhD dissertation. Arizona State University, Tempe, Arizona. 176 pp.

    Google Scholar 

  • Gray, L. J. 1981. Species composition and life histories of aquatic insects in a lowland Sonoran desert stream.American Midland Naturalist 106:229–242.

    Article  Google Scholar 

  • Gray, L. J., and S. G. Fisher. 1981. Postflood recolonization pathways of macroinvertebrates in a lowland Sonoran desert stream, Sycamore Creek, Arizona.American Midland Naturalist 106:249–257.

    Article  Google Scholar 

  • Grimm, N. B. 1988. Feeding dynamics, nitrogen budgets, and ecosystem role of a desert stream omnivore,Agosia chrysogaster (Pisces: Cyprinidae).Environmental Biology of Fishes 21:143–152.

    Google Scholar 

  • Grimm, N. B., and S. G. Fisher. 1984. Exchange between interstitial and surface water: implications for stream metabolism and nutrient cycling.Hydrobiologia 111:219–228.

    CAS  Google Scholar 

  • Grimm, N. B., and S. G. Fisher. 1986. Nitrogen limitation in a Sonoran desert stream.Journal of the North American Benthological Society 5:2–15.

    Article  Google Scholar 

  • Grimm, N. B., and S. G. Fisher. 1988. Successional patterns in a desert stream: effect of season, nutrient limitation, and disturbance frequency and magnitude.Bulletin of the North American Benthological Society 5:96.

    Google Scholar 

  • Grimm, N. B., and S. G. Fisher. 1989. Stability of periphyton and macroinvertebrates to disturbance by flash floods in a desert stream.Journal of North American Benthological Society 8:293–307.

    Article  Google Scholar 

  • Gurtz, M. E. 1984. Effects of disturbance regimes on stream biota. Symposium on Long-Term Research at Coweeta. ms. 38 pp.

  • Hannan, H. H., and T. C. Dorris. 1970. Succession of a macrophyte community in a constant temperature river.Limnology and Oceanography 15:442–453.

    Article  Google Scholar 

  • Hart, D. D. 1983. The importance of competitive interactions within stream populations and communities. Pages 99–136in J. Barnes and G. Minshall (eds.), Stream ecology: application and testing of general ecological theory. Plenum Press, New York. 399 pp.

    Google Scholar 

  • Hawkes, H. A. 1975. River zonation and classification. Pages 312–374in B. A. Whitton (ed.), River ecology. University of California Press, Berkeley. 725 pp.

    Google Scholar 

  • Hemphill, N., and S. D. Cooper. 1983. The effect of physical disturbance on the relative abundances of two filter-feeding insects in a small stream.Oecologia 58:378–382.

    Article  Google Scholar 

  • Horn, H. S. 1974. The ecology of secondary succession.Annual Review of Ecology and Systematics 5:25–37.

    Article  Google Scholar 

  • Hoopes, R. L. 1974. Flooding, as the result of Hurricane Agnes, and its effect on a macrobenthic community in an infertile headwater stream in central Pennsylvania.Limnology and Oceanography 19:853–857.

    Google Scholar 

  • Illies, J., and L. Botosaneanu. 1963. Problems et methods de la classification et de la zonation ecologique de eaux covrantes, considerées surtout du point de vue faunistique.Internationale Vereiningung für Theoretische und Angewandte Limnologie, Mitteilungen 12:1–57.

    Google Scholar 

  • Jackson, J. K. 1984. Aquatic insect emergence from a desert stream. MS thesis. Arizona State University, Tempe, Arizona. 82 pp.

    Google Scholar 

  • Jackson, J. K. 1987. Diel emergence, swarming and longevity of selected adult aquatic insects from a Sonoran desert stream.American Midland Naturalist 119:344–352.

    Article  Google Scholar 

  • Likens, G. E. 1970. Eutrophication and aquatic ecosystems. Pages 3–13in G. E. Likens (ed.), Nutrients and eutrophication. American Society of Limnology and Oceanography Special Symposium 1. Allen Press, Lawrence, KS.

    Google Scholar 

  • Loehle, C. 1987. Hypothesis testing in ecology: psychological aspects and the importance of theory maturation.Quarterly Review of Biology 62:397–409.

    Article  CAS  Google Scholar 

  • Margalef, R. 1960. Ideas for a synthetic approach to the ecology of running waters.Internationale Revue der Gesamten Hydrobiologie 45:133–153.

    Google Scholar 

  • Margalef, R. 1963. On certain unifying principles in ecology.American Naturalist 97:357–374.

    Article  Google Scholar 

  • Margalef, R. 1968. Perspectives in ecological theory. University of Chicago Press, Chicago. 111 pp.

    Google Scholar 

  • McAuliffe, J. 1984. Competition for space, disturbance, and the structure of a benthic stream community.Ecology 65:894–908.

    Article  Google Scholar 

  • McIntosh, R. P. 1980. The relationship between succession and the recovery process in ecosystems. Pages 11–62in J. Cairns (ed.), The recovery process in damaged ecosystems. Ann Arbor Science, Ann Arbor, Michigan.

    Google Scholar 

  • McLay, C. 1970. A theory concerning the distance travelled by animals entering the drift of a stream.Journal of the Fisheries Research Board of Canada 27:359–370.

    Google Scholar 

  • Miles, J. 1987. I. Vegetation succession: past and present perceptions. Pages 1–29in A. J. Gray, M. J. Crawley and P. J. Edwards (eds.), Colonization, succession and stability, 26th Symposium, British Ecological Society. Blackwell Scientific Publications, Oxford, UK.

    Google Scholar 

  • Miller, A. R., R. L. Lowe, and J. T. Rotenberry. 1987. Succession of diatom communities on sand grains.Journal of Ecology 75:693–709.

    Google Scholar 

  • Milner, A. M. 1987. Colonization and ecological development of new streams in Glacier Bay National Park, Alaska.Freshwater Biology 18:53–70.

    Google Scholar 

  • Minckley, W. L. 1963. The ecology of a spring stream, Doe Run, Mcade County, Kentucky.Wildlife Monographs 11:1–124.

    Google Scholar 

  • Minshall, G. W., R. C. Petersen, K. W. Cummins, T. L. Bott, J. R. Sedell, C. E. Cushing, and R. L. Vannote. 1983a. Interbiome comparison of stream ecosystem dynamics.Ecological Monographs 53:1–25.

    Article  Google Scholar 

  • Minshall, G. W., D. A. Andrews, and C. Y. Manuel-Faler. 1983b. Application of island biogeographic theory to streams: macroinvertebrate recolonization of the Teton River, Idaho. Pages 279–298in J. Barnes and G. W. Minshall (eds.), Stream ecology: application and testing of general ecological theory. Plenum Press, New York. 399 pp.

    Google Scholar 

  • Newbold, J. D., J. W. Elwood, R. V. O'Neill, and W. Van Winkle. 1981. Measuring nutrient spiralling in streams.Canadian Journal of Fisheries and Aquatic Sciences 38:860–863.

    Article  Google Scholar 

  • Odum, E. P. 1969. The strategy of ecosystem development.Science 164:262–270.

    CAS  Google Scholar 

  • Odum, H. T. 1956. Primary production in flowing waters.Limnology and Oceanography 1:102–117.

    Google Scholar 

  • Peckarsky, B. L. 1985. Do predaceous stoneflies and siltation affect the structure of stream insect communities colonizing enclosures?Canadian Journal of Zoology 63:1519–1530.

    Article  Google Scholar 

  • Peckarsky, B. L. 1986. Colonization of natural substrates by stream benthos.Canadian Journal of Fisheries and Aquatic Sciences 43:700–709.

    Google Scholar 

  • Peterson, C. G. 1987. Influences of flow regime on development and desiccation response of lotic diatom communities.Ecology 68:946–954.

    Article  Google Scholar 

  • Pickett, S. T. A. and P. S. White. 1985. The ecology of natural disturbance and patch dynamics. Academic Press, New York.

    Google Scholar 

  • Pickett, S. T. A., S. L. Collins and J. J. Armesto. 1987. A hierarchical consideration of causes and mechanisms of succession.Vegatatio 69:109–114.

    Article  Google Scholar 

  • Power, M. E., and A. J. Stewart. 1987. Disturbance and recovery of an algal assemblage following flooding in an Oklahoma stream.American Midland Naturalist 117:333–345.

    Article  Google Scholar 

  • Reice, S. R. 1985. Experimental disturbance and the maintenance of species diversity in a stream community.Oecologia 67:90–97.

    Article  Google Scholar 

  • Reiners, W. A., and G. E. Lang. 1978. Vegetational patterns and processes in the balsam fir zone, White Mountains, New Hampshire.Ecology 60:403–417.

    Article  Google Scholar 

  • Rodhe, W. 1969. Crystallization of eutrophication concepts in Europe. Pages 50–64in Eutrophication: causes, consequences and correctives. National Academy of Sciences, Washington, DC.

    Google Scholar 

  • Roemer, S. C., K. D. Hoagland, and J. R. Rosowski. 1984. Development of a freshwater periphyton community as influenced by diatom mucilages.Journal of Botany 62:1799–1813.

    Article  Google Scholar 

  • Shelford, V. E. 1911. Ecological succession. II. Pond fishes.Biological Bulletin 21(3):127–151.

    Google Scholar 

  • Skinner, W. D. and D. E. Arnold. 1988. Absence of temporal succession of invertebrates in Pennsylvania streams.Bulletin of the North American Benthological Society 5(1):63.

    Google Scholar 

  • Statzner, B., and B. Higler. 1985. Questions and comments on the river continuum concept.Canadian Journal of Fisheries and Aquatic Sciences 42:1038–1044.

    Google Scholar 

  • Stevenson, R. J. 1983. Effect of current and conditions simulating autogenically changing microhabitats on benthic diatom immigration.Ecology 64:1514–1524.

    Article  Google Scholar 

  • Usher, M. B. 1979. Markovian approaches to ecological succession.Journal of Animal Ecology 48:413–426.

    Google Scholar 

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell, and C. E. Cushing. 1980. The river continuum concept.Canadian Journal of Fisheries and Aquatic Sciences 37:130–137.

    Article  Google Scholar 

  • Walde, S. J. 1986. Effect of an abiotic disturbance on a lotic predator-prey interaction.Oecologia 69:243–247.

    Article  Google Scholar 

  • Ward, A. K., J. A. Baross, C. N. Dahm, M. D. Lilley, and J. R. Sedell. 1983. Qualitative and quantitative observations on aquatic algal communities and recolonization within the blast zone of Mt. St. Helens, 1980 and 1981.Journal of Phycology 19:238–247.

    Article  Google Scholar 

  • Webster, J. R., J. B. Waide and B. C. Patten. 1975. Nutrient cycling and the stability of ecosystems. Pages 1–27in F. G. Howell, J. B. Gentry, and M. H. Smith (eds.), Mineral cycling in southeastern ecosystems. ERDA Symposium Series, Washington, D.C.

  • Webster, J. R., M. E. Gurtz, J. J. Hains, J. L. Meyer, W. T. Swank, J. B. Waide, and J. B. Wallace. 1983. Stability of stream ecosystems. Pages 355–395in J. R. Barnes and G. W. Minshall (eds.), Stream ecology. Plenum Press, New York. 399 pp.

    Google Scholar 

  • Williams, W. T., G. N. Lance, L. J. Webb, J. B. Tracey, and J. H. Connell. 1969. Studies in the numerical analysis of complex rainforest communities. IV. A method for the elucidation of small scale forest pattern.Journal of Ecology 57:635–654.

    Google Scholar 

  • Winterbourn, M. J., J. S. Rounick, and B. Cowie. 1981. Are New Zealand stream ecosystems really different?New Zealand Journal of Marine and Freshwater Research 15:321–328.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fisher, S.G. Recovery processes in lotic ecosystems: Limits of successional theory. Environmental Management 14, 725–736 (1990). https://doi.org/10.1007/BF02394721

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02394721

Key words

Navigation