Skip to main content
Log in

On the genesis of the soil mantle of the region of Manaus, Central Amazonia, Brazil

  • Published:
Experientia Aims and scope Submit manuscript

Summary

The dynamics of the forest to the north of Manaus is tightly linked to that of the soil. The latosol that covers the plateau, which supports a dense forest, consists from top to bottom of: (a) a brown, clayey organic horizon (0.3 m), (b) a yellow horizon, very rich in clay but permeable (from 0.3 to 4 m), (c) a nodular horizon rich in Al and Fe oxides (from 4 to 9 m), and (d) a horizon which still preserves the sedimentary structures of the parent sandstone, where quartz is intensely dissolved and kaolinite crystallizes in pores. In perfectly flat areas, the clay of the organic horizon is destroyed by acidocomplexolysis, and the dissolved Al is transported vertically by the drainage water. A part of this Al is used to make the gibbsite nodules of horizon (c), and the rest is used to make kaolinite in horizon (d). Because aluminum is thus conserved within any vertical prism, the rate of destruction of horizon (a) is equivalent to the rate of advance of the kaolinization zone into the sediment: the latosol is said to be in equilibrium, the surface remains perfectly flat as it slowly sinks, the quantity of kaolinite increases with time, and the silica released by quartz dissolution in the whole profile is exported by drainage water to the water table. In contrast, near drainage axes, however small initially, the drainage becomes inclined toward the axis. Part of the Al released by acidocomplexolysis of horizon (a) is now exported to rivers, and Al is no longer conserved within any given prism. The rate of advance of the kaolinization zone (d) into the sediment now becomes less than the rate of destruction of horizon (a) and the surface sinks faster than that of the surrounding plateau. After this differential ‘podzolization’ has gone on long enough, it creates a network of ‘geochemical valleys’ characterized by convex slopes and bounded by sandy soils (campinas). The vegetation becomes sparser and sparser. At the end, only some bushes and lichens survive on the white sand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubert, G., and Segalen P., Projet de classification des sols ferrallitiques. Cah. ORSTOM, ser. Pédol. IV4 (1966) 97–112.

    Google Scholar 

  2. Boulet, R., Toposéquences de sols tropicaux en Haute-Volta. Equilibre et déséquilibre pédobioclimatique. Thèse Sc. Strasbourg et Mém. ORSTOM no 85, (1974).

  3. Boulet, R., Humbel, F.X., and Lucas, Y., Analyse structurale et cartographie en pédologie. II. Une méthode d'analyse prenant en compte l'organisation tridimensionnelle des couvertures pédologiques. Cah. ORSTOM, ser. Pédol. XIX4 (1982) 323–339.

    Google Scholar 

  4. Boulet, R., Chauvel, A., and Lucas, Y.,Les systèmes de transformation en pédologie, Livre Jubilaire du Cinquantenaire de Ass. fr. Et. Sol (1984) 167–179.

  5. Brazil. Ministerio das Minas e Energia. Departamento Nacional da Produçao Mineral. Projeto RADAMBRASIL. Levantamento de Recursos Naturais. Folha SA. 20, Manaus 1978.

  6. Camargo, M.N., and Rodrigues, T.E., Guia de excursao do XVII Congresso Brasileiro de Ciencia do Solo. EMBRAPA-SNLCS 1979.

  7. Chauvel, A., Os latossolos amarelos, alicos, argilosos dentro dos ecosistemas das bacias experimentais do INPA e da regiao Vizinha. Acta amazon. XII-3 (1982) 47–60.

    Article  Google Scholar 

  8. Chauvel, A., Boulet, R., Join, P., and Bocquier, G., Aluminum and iron hydroxide segregation in nodules of latosols developed on tertiairy sediments (Barreiras group) near Manaus (Amazon Basin, Brazil), pp. 507–526. II. Int. Sem. on Lateritisation Processes. IAGUSP, Sao Paulo, 1982.

  9. EUA-Department of Agriculture. Soil Survey Staff. Soil taxonomy. A. Basic system of classification for making and interpreting soil surveys. Washington. Soil Conservation Service (1975).

  10. Guillaumet, J.L., Some structural and floristic aspects of the forest. Experientia43 (1987) 241–251.

    Article  Google Scholar 

  11. Kahn, F., Architecture comparée de forêts tropicales humides et dynamique de la rhizosphère. Thèse Montpellier (1983).

  12. Kahn, F., The distribution of palm trees as a function of local topography in Amazonian terre-firme forests. Experientia43 (1987) 251–259.

    Article  Google Scholar 

  13. Klinge, H., Podzol soils in the Amazon Basin. J. Soil Sci. (1965) 96–103.

  14. Klinge, H., and Ohle, W., Chemical properties of rivers in the Amazon area in relation to soil conditions. Verh. int. Ver. Limnol., Stuttgart15 (1964) 1067–1076.

    CAS  Google Scholar 

  15. Leenheer, J.A., Origin and nature of humic substances in the waters of the Amazon river basin. Acta amazon.3 (1980) 513–526.

    Article  Google Scholar 

  16. Lucas, Y., Chauvel, A., Boulet, R., Ranzani, G., and Scatolini, F., Transiçao latossolos-podzois na região de Manaus Amazonia. Brasil. R. Bras. Ci Solo. Campinas 8–3 (1984) 325–335.

  17. Pedro, G., Caractérisation générale des processus de l'altération hydrolytique. Sciences du Sol. Versailles 2–3 (1979) 93–105.

  18. Prance, G.T., and Schubart, H., Nota preliminar sobre a origem das Campinas abertas de areia branca do baixo Rio Negro. Acta amazon.4 (1977) 567–570.

    Article  Google Scholar 

  19. Ranzani, G., Identificação e caracterização de alguns solos da Estaçao Experimental de Silvicultura Tropical do INPA. Acta amazon.1 (1980) 7–41.

    Article  Google Scholar 

  20. Salati et al., Towards a water balance in the Central Amazonian region. Experientia43 (1987) 222–233.

    Article  Google Scholar 

  21. Schubart, H., Franken, W., and Luizao, F., Uma floresta sobre solos pobres. Cienc. Hoje-SBPC (1984) 26–32.

  22. Sioli, H., Gewässerchemie und Vorgänge in den Böden im Amazonasgebiet. Naturwissenschaften41 (1954) 456–457.

    Article  CAS  Google Scholar 

  23. Sioli, H., Hydrochemistry and geology in the Brasilian Amazon region. Amazoniana 1–3 (1968) 267–277.

    Google Scholar 

  24. Sioli, H., and Klinge, H., Über Gewässer und Böden des brasilianischen Amazonas-Gebietes. Erde3 (1961) 205–219.

    Google Scholar 

  25. Sombroek, W. G., Amazon soils: a reconnaissance of soils of the Brazilian Amazon Region. Center of Agricultural Publication and Documentation Wageningen. Holland 1966.

    Google Scholar 

  26. Swindale, L. D., and Jackson, M. L., Genetic processes in some residual podzolised Soils of New-Zealand. 6e Congr. int. Sci. Sol, Paris (1956) 233–239.

  27. Turenne, J. F., Mode d'humification podzolique dans deux toposéquences guyanaises. Thèse Nancy et Mém. ORSTOM no84 (1977).

  28. Villa Nova, N. A., Salati, E., and Matsui, E., Estimava da evapotranspiraçao na Bacia Amazonica. Acta amazon.2 (1976) 215–228.

    Article  Google Scholar 

  29. Volkoff, B., Matsui, E., and Cerri, C. C. Discriminação isotopica do carbono no humus de latossolo e podzol da região Amazonica do Brasil. Regional Colloquium on Soil Organic Matter Studies. CENA-USP-PROMOCET (1982) 147–153.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Acknowledgments. The authors are indebted to Dr E. Merino (Dept. of Geology, Indiana University) for helpful criticisms and suggestions. This research was carried out in I.N.P.A. (Instituto Nacional de Pesquisas da Amazonia) and was financially supported by the CNPq-CNRS/ORSTOM conv.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chauvel, A., Lucas, Y. & Boulet, R. On the genesis of the soil mantle of the region of Manaus, Central Amazonia, Brazil. Experientia 43, 234–241 (1987). https://doi.org/10.1007/BF01945546

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01945546

Key words

Navigation