Skip to main content
Log in

Iron-rich particles in embryos of seeds from the family Pinaceae

  • Original Papers
  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Iron-rich particles, previously reported in seeds of members of the genus Pinus, were found in radicle-hypocotyl tissues of dry embryos from eight other genera in the family Pinaceae. Thus, these Fe-rich particles are of common occurrence in seeds of this conifer family. These particles were most difficult to locate inPseudolarix amabilis, which has green embryos. Energy-dispersive X-ray analysis was used to determine the elements present in conifer Fe-rich particles and phytoferritin deposits in pea embryo axes. Ferich particles from all species studied contained mainly Fe and P but also contained considerable K and Mg. Abietoideae group I (genera Cedrus andAbies) had lower Fe ∶ P ratios compared to all the other combined subfamilies within the Pinaceae. Pea phytoferritin deposits contained markedly lower amounts of P relative to Fe based on peakto-background ratios and quantitative values calculated by using a ferric phosphate standard. We also found, for the first time, that pea phytoferritin contained considerable K. A strong similarity was found between the energy-dispersive X-ray analysis spectra from Ferich particles and portions of a laboratory-synthesized Fe, K, Mg phytate salt. Phytate is a common mineral-nutrient storage compound in seeds. The possibility of these Fe-rich particles being phytoferritin cannot be ruled out, but if they are phytoferritin, they have lower Fe ∶ P ratios than almost all other ferritins reported to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EDX:

energy-dispersive X-ray

References

  • Beecroft P, Lott JNA (1996) Changes in the element composition of globoids fromCucurbita maxima andCucurbita andreana cotyledons during early seedling growth. Can J Bot 74: 838–847

    Google Scholar 

  • Benharrat H, Thalouarn P, Renaudin S (1984) Mise en évidence par microscopie électronique et microanalyse de phytoferritine dans les amyloplastes d'une plante parasite,Osyris alba. Physiol Veg 22: 821–825

    Google Scholar 

  • Briat JF (1996) Roles of ferritin in plants. J Plant Nutr 19: 1331–1342

    Google Scholar 

  • Chandler JA (1977) X-ray microanalysis in the electron microscope. North-Holland, Amsterdam

    Google Scholar 

  • Farjon A (1990) Pinaceae. Koeltz, Königstein

    Google Scholar 

  • Huxley A, Griffiths M, Levy M (1992) The new Royal Horticultural Society dictionary of gardening. Macmillan, London

    Google Scholar 

  • Hyde BB, Hodge AJ, Kahn A, Birnstiel ML (1963) Studies on phytoferritin I: identification and localization. J Ultrastruct Res 9: 248–258

    Google Scholar 

  • Knoth R, Wrischer M, Vetter J (1980) Phytoferritin-accumulating plastids in the male generative cell ofPelargonium × hortorum Bailey. Z Pflanzenphysiol 98: 365–370

    Google Scholar 

  • Lane LC, Skopp RN (1986) A simple method for purifying phytoferritin. J Plant Nutr 9: 661–669

    Google Scholar 

  • Laulhère J-P, Labouré A-M, Van Wuytswinkel O, Gagnon J, Briat J-F (1992) Purification, characterization and function of bacterioferritin from the cyanobacteriumSynechocystis P.C.C. 6803. Biochem J 281: 785–793

    Google Scholar 

  • Lobreaux S, Briat J-F (1991) Ferritin accumulation and degradation in different organs of pea (Pisum sativum) during development. Biochem J 274: 601–606

    Google Scholar 

  • Lott JNA (1980) Protein bodies. In: Tolbert NE (ed) The biochemistry of plants: a comprehensive treatise, vol 1, the plant cell. Academic Press, New York, pp 589–623

    Google Scholar 

  • — (1981) Protein bodies in seeds. Nord J Bot 1: 421–432

    Google Scholar 

  • — (1984) Accumulation of seed reserves of phosphorus and other minerals. In: Murray DR (ed) Seed physiology, vol 1. Academic Press, Sydney, pp 139–166

    Google Scholar 

  • —, Goodchild DJ, Craig S (1984) Studies of mineral reserves in pea (Pisum sativum) cotyledons using low-water-content procedures. Aust J Plant Physiol 11: 459–469

    Google Scholar 

  • —, Greenwood JS, Batten G (1995) Mechanisms and regulation of mineral nutrient storage during seed development. In: Kigel J, Galili G (ed) Seed development and germination. Marcel Dekker, New York, pp 215–235

    Google Scholar 

  • Mann S, Bannister JV, Williams RJP (1986) Structure and composition of ferritin cores isolated from human spleen, limpet (Patella vulgata) hemolymph and bacterial (Pseudomonas aeruginosd) cells. J Mol Biol 188: 225–232

    Google Scholar 

  • —, Williams JM, Treffry A, Harrison PM (1987) Reconstituted and native iron-cores of bacterioferritin and ferritin. J Mol Biol 198: 405–416

    Google Scholar 

  • Marinos NG (1967) Multifunctional plastids in the meristematic region of potato tuber buds. J Ultrastruct Res 17: 91–113

    Google Scholar 

  • Perrin A (1970) Diversité des formes d'accumulation de la phytoferritine dans les cellules constituant l'epithème des hydathodes deTaraxacum officinale Weber etSaxifraga aizoon Jacq. Planta 93: 71–81

    Google Scholar 

  • Pittermann JM, West M, Lott JNA (1996) Characterization of globoids and iron-rich particles in cotyledons ofPinus banksiana seeds and seedlings. Can J For Res 26: 1697–1702

    Google Scholar 

  • Platt-Aloia KA, Thomson WW, Terry N (1983) Changes in plastid ultrastructure during iron nutrition-mediated chloroplast development. Protoplasma 114: 85–92

    Google Scholar 

  • Pueschel CM, Parthasarathy MV (1984) X-ray microanalysis of phytoferritin inConstantinea (Cryptonemiales, Rhodophyta). Phycologia 23: 465–469

    Google Scholar 

  • Ragland M, Briat J-F, Gagnon J, Laulhère J-P, Massenet O, Theil EC (1990) Evidence for conservation of ferritin sequences among plants and animals and for a transit peptide in soybean. J Biol Chem 265: 18339–18344

    Google Scholar 

  • Reichert RD, MacKenzie SL (1982) Composition of peas (Pisum sativum) varying widely in protein content. J Agric Food Chem 30: 312–317

    Google Scholar 

  • Robards AW, Humpherson PG (1967) Phytoferritin in plastids of the cambial zone of willow. Planta 76: 169–178

    Google Scholar 

  • —, Robinson CL (1968) Further studies on phytoferritin. Planta 82: 179–188

    Google Scholar 

  • Rohrer JS, Islam QT, Watt GD, Sayers DE, Theil EC (1990) Iron environment in ferritin with large amounts of phosphate, fromAzotobacter vinelandii and horse spleen, analyzed using extended x-ray absorption fine structure (EXAFS). Biochemistry 29: 259–264

    Google Scholar 

  • Russ JC (1972) Obtaining quantitative x-ray analytical results from thin sections in the electron microscope. In: Russ JC, Panessa BJ (eds) Thin-section microanalysis: proceedings of the Symposium of EDAX Laboratories, Raleigh, NC, November 8, 1972, pp 115–133

  • Sczekan SR, Joshi JG (1989) Metal-binding properties of phytoferritin and synthetic iron cores. Biochim Biophys Acta 990: 8–14

    Google Scholar 

  • Seckbach J (1972a) Electron microscopical observations of leaf ferritin from iron-treatedXanthium plants: localization and diversity in the organelle. J Ultrastruct Res 39: 65–76

    Google Scholar 

  • — (1972b) Remarks on ferritin from iron loaded plants. Planta Med 21: 267–273

    Google Scholar 

  • Sheffield E, Bell PR (1978) Phytoferritin in the reproductive cells of a fern,Pteridium aquilinum (L.) Kuhn. Proc R Soc Lond B Biol Sci 202: 297–306

    Google Scholar 

  • Skilnyk HR, Lott JNA (1992) Mineral analyses of storage reserves ofCucurbita maxima andCucurbita andreana pollen. Can J Bot 70: 491–495

    Google Scholar 

  • Sprey B, Gliem G, Janossy AGS (1976) Iron containing inclusions in chloroplasts ofNicotiana clevelandii ×Nicotiana glutinosa I: X-ray microanalysis and ultrastructure. Z Pflanzenphysiol 79: 165–176

    Google Scholar 

  • — — — (1978) Iron and phosphorus containing inclusions in chloroplasts ofNicotiana clevelandii ×Nicotiana glutinosa. II: development of etioplasts to chloroplasts in cotyledons. Z Pflanzenphysiol 88: 69–82

    Google Scholar 

  • Steuer DA, Laetsch WM (1969) Chloroplast development inNicotiana tabacum “Maryland mammoth”. Am J Bot 56: 260–270

    Google Scholar 

  • Stewart A, Nield H, Lott JNA (1988) An investigation of the mineral content of barley grains and seedlings. Plant Physiol 86: 93–97

    Google Scholar 

  • Stewart WN (1983) Paleobotany and the evolution of plants. Cambridge University Press, Cambridge

    Google Scholar 

  • van der Mark F, de Lange T, Bienfait HF (1981) The role of ferritin in developing primary bean leaves under various conditions. Planta 153: 338–342

    Google Scholar 

  • —, van den Briel ML, van Oers JWAM, Bienfait HF (1982) Ferritin in bean leaves with constant and changing iron status. Planta 156: 341–344

    Google Scholar 

  • Wada T, Lott JNA (1997) Light and electron microscopic and energy dispersive x-ray microanalysis studies of globoids in protein bodies of embryo tissues and the aleurone layer of rice (Oryza saliva L.) grains. Can J Bot 75: 1137–1147

    Google Scholar 

  • Wade VJ, Treffry A, Laulhère J-P, Bauminger ER, Cleton MI, Mann S, Briat J-F, Harrison PM (1993) Structure and composition of ferritin cores from pea seed (Pisum sativum). Biochim Biophys Acta 1161: 91–96

    Google Scholar 

  • Waldo GS, Wright E, Whang Z-H, Briat J-F, Theil EC, Sayers DE (1995) Formation of the ferritin iron mineral occurs in plastids: an X-ray absorption spectroscopy study. Plant Physiol 109: 797–802

    Google Scholar 

  • West MM (1992) Elemental analysis and microscopical studies of the mature seeds of eleven species ofPinus. Master of Science thesis, McMaster University, Hamilton, Ont, Canada

    Google Scholar 

  • —, Lott JNA (1993) Studies of mature seeds of elevenPinus species II: subcellular structure and localization of elements. Can J Bot 71: 577–585

    Google Scholar 

  • Zar JH (1984) Biostatistical analysis. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reid, D.A., Ducharme, H.C., West, M.M. et al. Iron-rich particles in embryos of seeds from the family Pinaceae. Protoplasma 202, 122–133 (1998). https://doi.org/10.1007/BF01282540

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01282540

Keywords

Navigation