Skip to main content
Log in

Localization of seed-derived and externally supplied nutrients in peanut seedling root

  • Published:
Theoretical and Experimental Plant Physiology Aims and scope Submit manuscript

Abstract

The distribution of essential nutrients such as potassium (K), phosphorous (P), calcium (Ca), sulfur (S) and chlorine (Cl) within root tissues is crucial aspect of plant growth but nothing is known regarding this subject in seedlings of dicotyledons such as peanut (Arachis hypogaea). We used scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS) and inductively coupled plasma optical emission spectrometry (ICP-OES) to analyze element distributions in developing root tissues. Distribution patterns and concentrations of endogenous K, P, S and exogenous Ca from seeds grown in water varied along the length of peanut radicle and were tissue specific. Semi-quantitative SEM/EDS data indicated 24 mM K in the cortex and 46 mM K in the stele at a distance of 5 mm from the root tip. The P concentration in the same region was 15 mM in cortex and 22 mM in stele. The concentration of K and P decreased in the more mature parts of the root. SEM–EDS element concentrations values were lower for K and higher for P when compared with the ICP-OES data of root segments. Peanut roots grown in 10 mM Ca(NO3)2 solution for hours showed tissue-specific Ca distribution at 25 mm from the root tip with the highest levels detected in portions of the cortex. The parent root cortex centrifugal to the tip of developing lateral root primordia had lower levels of calcium than could be detected by SEM/EDS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Acharya A (2021a) Global agriculture management system. Crop Sci 61(5):2861–2862. https://doi.org/10.1002/csc2.20499

    Article  Google Scholar 

  • Acharya A (2021b) Tissue specific nutrient localization in the Arachis hypogaea seedling root (Doctoral dissertation, University of Louisiana at Lafayette)

  • Bavaresco LG, Osco LP, Araujo ASF, Mendes LW, Bonifacio A, Araujo FF (2020) Bacillus subtilis can modulate the growth and root architecture in soybean through volatile organic compounds. Theor Exp Plant Physiol 32(2):99–108

    CAS  Google Scholar 

  • Baxter I, Ouzzani M, Orcun S, Kennedy B, Jandhyala SS, Salt DE (2007) Purdue ionomics information management system. An integrated functional genomics platform. Plant Physiol 143(2):600–611

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beauford W, Barber J, Barringer AR (1977) Uptake and distribution of mercury within higher plants. Physiol Plant 39(4):261–265

    CAS  Google Scholar 

  • Boogerd FC, van Rossum D (1997) Nodulation of groundnut by Bradyrhizobium: a simple infection process by crack entry. FEMS Microbiol Rev 21(1):5–27

    CAS  Google Scholar 

  • Brunner I, Luster J, Günthardt-Goerg MS, Frey B (2008) Heavy metal accumulation and phytostabilisation potential of tree fine roots in a contaminated soil. Environ Pollut 152(3):559–568

    CAS  PubMed  Google Scholar 

  • Bucking H, Heyser W (2000) Subcellular compartmentation of elements in non-mycorrhizal and mycorrhizal roots of Pinus sylvestris: an X- ray microanalytical study I. The distribution of phosphate. New Phytol 145(2):311–320

    CAS  Google Scholar 

  • Bulgarelli RG, De Oliveira VH, de Andrade SAL (2020) Arbuscular mycorrhizal symbiosis alters the expression of PHT1 phosphate transporters in roots and nodules of P-starved soybean plants. Theor Exp Plant Physiol 32(3):243–253

    CAS  Google Scholar 

  • Casero PJ, Casimiro I, Lloret PG (1995) Lateral root initiation by asymmetrical transverse divisions of pericycle cells in four plant species: Raphanus sativus, Helianthus annuus, Zea mays, and Daucus carota. Protoplasma 188(1):49–58

    Google Scholar 

  • Chassagne-Berces S, Poirier C, Devaux MF, Fonseca F, Lahaye M, Pigorini G et al (2009) Changes in texture, cellular structure and cell wall composition in apple tissue as a result of freezing. Food Res Int 42(7):788–797

    CAS  Google Scholar 

  • Cheong YH, Pandey GK, Grant JJ, Batistic O, Li L, Kim BG et al (2007) Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis. Plant J 52(2):223–239

    CAS  PubMed  Google Scholar 

  • Cholewa E, Peterson CA (2004) Evidence for symplastic involvement in the radial movement of calcium in onion roots. Plant Physiol 134(4):1793–1802

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clarkson DT, Hanson JB (1980) The mineral nutrition of higher plants. Annu Rev Plant Physiol 31(1):239–298

    CAS  Google Scholar 

  • Clarkson DT, Hopper MJ, Jones LHP (1986) The effect of root temperature on the uptake of nitrogen and the relative size of the root system in Lolium perenne I. Solutions containing both NH4+ and NO3. Plant Cell Environ 9(7):535–545

    Google Scholar 

  • Conn S, Gilliham M (2010) Comparative physiology of elemental distributions in plants. Ann Bot 105(7):1081–1102

    CAS  PubMed  PubMed Central  Google Scholar 

  • da Silva BHP, Rossatto DR (2019) Are underground organs able to store water and nutrients? A study case in non-arboreal species from the Brazilian Cerrado. Theor Exp Plant Physiol 31(3):413–421

    Google Scholar 

  • De Smet I, Vanneste S, Inzé D, Beeckman T (2006) Lateral root initiation or the birth of a new meristem. Plant Mol Biol 60(6):871–887

    CAS  PubMed  Google Scholar 

  • Delhaize E, Craig S, Beaton CD, Bennet RJ, Jagadish VC, Randall PJ (1993) Aluminum tolerance in wheat (Triticum aestivum L.) (I. Uptake and distribution of aluminum in root apices). Plant Physiol 103(3):685–693

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dembinsky D, Woll K, Saleem M, Liu Y, Fu Y, Borsuk LA et al (2007) Transcriptomic and proteomic analyses of pericycle cells of the maize primary root. Plant Physiol 145(3):575–588

    CAS  PubMed  PubMed Central  Google Scholar 

  • Demidchik V, Bowen HC, Maathuis FJ, Shabala SN, Tester MA, White PJ, Davies JM (2002) Arabidopsis thaliana root non-selective cation channels mediate calcium uptake and are involved in growth. Plant J 32(5):799–808

    CAS  PubMed  Google Scholar 

  • Ehrhardt-Brocardo NCM, Coelho CMM, Souza CA, Mathias V (2019) Callose accumulation in roots of soybean seedlings under water deficit. Theor Exp Plant Physiol 31(4):475–481

    Google Scholar 

  • Ensikat HJ, Weigend M (2013) Cryo-scanning electron microscopy of plant samples without metal coating, utilizing bulk conductivity. Microsc Anal 27(6):7–10

    Google Scholar 

  • Esau K (1977) Anatomy of seed plants, 2nd edn. Wiley, New York

    Google Scholar 

  • Escamez S, André D, Sztojka B, Bollhöner B, Hall H, Berthet B et al (2020) Cell death in cells overlying lateral root primordia facilitates organ growth in Arabidopsis. Curr Biol 30(3):455–464

    CAS  PubMed  Google Scholar 

  • Fu X, Harberd NP (2003) Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature 421(6924):740–743

    CAS  PubMed  Google Scholar 

  • Garnik EY, Tarasenko VI, Gorbunova AI, Shmakov VN, Konstantinov YM (2019) Genome uncoupled (gun) phenotype is associated with root growth repression in Arabidopsis seedlings grown on lincomycin. Theor Exp Plant Physiol 31(4):445–454

    CAS  Google Scholar 

  • Gierth M, Mäser P, Schroeder JI (2005) The potassium transporter AtHAK5 functions in K+ deprivation-induced high-affinity K+ uptake and AKT1 K+ channel contribution to K+ uptake kinetics in Arabidopsis roots. Plant Physiol 137(3):1105–1114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grignon N, Touraine B, Durand M (1989) 6 (5) Carboxyfluorescein as a tracer of phloem sap translocation. Am J Bot 76(6):871–877

    CAS  Google Scholar 

  • Handley R, Overstreet R (1961) Uptake of calcium & chlorine in roots of Zea mays. Plant Physiol 36(6):766

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heim A, Brunner I, Frey B, Frossard E, Luster J (2001) Root exudation, organic acids, and element distribution in roots of Norway spruce seedlings treated with aluminum in hydroponics. J Plant Nutr Soil Sci 164(5):519–526

    CAS  Google Scholar 

  • Jeschke WD, Stelter W (1976) Mesurement of longitudinal ion profiles in single roots of Hordeum and Atriplex by use of flameless atomic absorption spectroscopy. Planta 128(2):107–112

    CAS  PubMed  Google Scholar 

  • Jones R, Ougham H, Thomas H, Waaland S (2012) Molecular life of plants. Wiley-Blackwell, Chichester

    Google Scholar 

  • Kumari A, Das P, Parida AK, Agarwal PK (2015) Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. Front Plant Sci 6:537

    PubMed  PubMed Central  Google Scholar 

  • Lahner B, Gong J, Mahmoudian M, Smith EL, Abid KB, Rogers EE et al (2003) Genomic scale profiling of nutrient and trace elements in Arabidopsis thaliana. Nat Biotechnol 21(10):1215–1221

    CAS  PubMed  Google Scholar 

  • Langer K, Ache P, Geiger D, Stinzing A, Arend M, Wind C et al (2002) Poplar potassium transporters capable of controlling K+ homeostasis and K+-dependent xylogenesis. Plant J 32(6):997–1009

    CAS  PubMed  Google Scholar 

  • Läuchli A, Spurr AR, Epstein E (1971) Lateral transport of ions into the xylem of corn roots: II. Evaluation of a stelar pump. Plant Physiol 48(2):118–124

    PubMed  PubMed Central  Google Scholar 

  • Lee S, Oh MM (2021) Electric stimulation promotes growth, mineral uptake, and antioxidant accumulation in kale (Brassica oleracea var. acephala). Bioelectrochemistry 138:107727

    CAS  PubMed  Google Scholar 

  • Lee RB, Ratcliffe RG (1993) Subcellular distribution of inorganic phosphate, and levels of nucleoside triphosphate, in mature maize roots at low external phosphate concentrations: measurements with 31P-NMR. J Exp Bot 44(3):587–598

    CAS  Google Scholar 

  • Li L, Luo Y, Li R, Zhou Q, Peijnenburg WJ, Yin N et al (2020) Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. Nat Sustain 3(11):929–937

    Google Scholar 

  • Lombi E, Zhao FJ, Fuhrmann M, Ma LQ, McGrath SP (2002) Arsenic distribution and speciation in the fronds of the hyperaccumulator Pteris vittata. New Phytol 156(2):195–203

    CAS  PubMed  Google Scholar 

  • Lyubenova L, Pongrac P, Vogel-Mikuš K, Mezek GK, Vavpetič P, Grlj N et al (2013) The fate of arsenic, cadmium and lead in Typha latifolia: a case study on the applicability of micro-PIXE in plant ionomics. J Hazard Mater 248:371–378

    PubMed  Google Scholar 

  • Malangisha GK, Yang Y, Moustafa-Farag M, Fu Q, Shao W, Wang J et al (2020) Subcellular distribution of aluminum associated with differential cell ultra-structure, mineral uptake, and antioxidant enzymes in root of two different Al+3-resistance watermelon cultivars. Plant Physiol Biochem 155:613–625

    CAS  PubMed  Google Scholar 

  • Malhotra H, Sharma S, Pandey R (2018) Phosphorus nutrition: plant growth in response to deficiency and excess. In: Plant nutrients and abiotic stress tolerance, pp 171–190. Springer, Singapore

  • Mäser P, Gierth M, Schroeder JI (2002) Molecular mechanisms of potassium and sodium uptake in plants. In: Progress in Plant Nutrition: Plenary Lectures of the XIV International Plant Nutrition Colloquium, pp 43–54. Springer, Dordrecht

  • Miller AJ, Cookson SJ, Smith SJ, Wells DM (2001) The use of microelectrodes to investigate compartmentation and the transport of metabolized inorganic ions in plants. J Exp Bot 52(356):541–549

    CAS  PubMed  Google Scholar 

  • Moore DP, Overstreet R, Jacobson L (1961) Uptake of magnesium & its interaction with calcium in excised barley roots. Plant Physiol 36(3):290

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moradi AB, Swoboda S, Robinson B, Prohaska T, Kaestner A, Oswald SE et al (2010) Mapping of nickel in root cross-sections of the hyperaccumulator plant Berkheya coddii using laser ablation ICP-MS. Environ Exp Bot 69(1):24–31

    CAS  Google Scholar 

  • Murphy JA (2002) Designing a microscopy/analytical instrumentation facility: step by step procedure. Microsc Today 10(6):36–41

    Google Scholar 

  • Newman IA (2001) Ion transport in roots: measurement of fluxes using ion-selective microelectrodes to characterize transporter function. Plant Cell Environ 24(1):1–14

    CAS  PubMed  Google Scholar 

  • Norton GJ, Aitkenhead MJ, Khowaja FS, Whalley WR, Price AH (2008) A bioinformatic and transcriptomic approach to identifying positional candidate genes without fine mapping: an example using rice root-growth QTLs. Genomics 92(5):344–352

    CAS  PubMed  Google Scholar 

  • Pearce RS (2001) Plant freezing and damage. Ann Bot 87(4):417–424

    CAS  Google Scholar 

  • Pesacreta TC, Acharya A, Hasenstein KH (2021) Endogenous nutrients are concentrated in specific tissues in the Zea mays seedling. Protoplasma 258(4):863–878

    CAS  PubMed  Google Scholar 

  • Pesacreta TC, Carley WW, Webb WW, Parthasarathy MV (1982) F-actin in conifer roots. Proc Natl Acad Sci USA 79(9):2898–2901

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pesacreta TC, Lucas WJ (1985) Presence of a partially-coated reticulum in angiosperms. Protoplasma 125(3):173–184

    Google Scholar 

  • Pesacreta TC (2015) F-actin distribution in root primary tissues of several seed plant species. Am J Bot 102(9):1422–1433

    CAS  PubMed  Google Scholar 

  • Pesacreta TC, Hasenstein KH (2018) Tissue accumulation patterns and concentrations of potassium, phosphorus, and carboxyfluorescein translocated from pine seed to the root. Planta 248(2):393–407

    CAS  PubMed  Google Scholar 

  • Pesacreta TC, Purpera MA (2014) Light microscopy survey of extant gymnosperm root protophloem and comparison with basal angiosperms. Botany 92(5):388–401

    Google Scholar 

  • Phothiset S, Charoenrein S (2014) Effects of freezing and thawing on texture, microstructure and cell wall composition changes in papaya tissues. J Sci Food Agric 94(2):189–196

    CAS  PubMed  Google Scholar 

  • Pita-Barbosa A, Ricachenevsky FK, Flis PM (2019) One “OMICS” to integrate them all: ionomics as a result of plant genetics, physiology and evolution. Theor Exp Plant Physiol 31(1):71–89

    CAS  Google Scholar 

  • Pitman MG (1969) Adaptation of barley roots to low oxygen supply and its relation to potassium and sodium uptake. Plant Physiol 44(9):1233–1240

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pritchard J, Fricke W, Tomos D (1997) Turgor-regulation during extension growth and osmotic stress of maize roots. An example of single-cell mapping. In: Plant roots-from cells to systems, pp 11–21. Springer, Dordrecht

  • Punshon T, Guerinot ML, Lanzirotti A (2009) Using synchrotron X-ray fluorescence microprobes in the study of metal homeostasis in plants. Ann Bot 103(5):665–672

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quadir QF, Watanabe T, Chen Z, Osaki M, Shinano T (2011) Ionomic response of Lotus japonicus to different root-zone temperatures. Soil Sci Plant Nutr 57(2):221–232

    CAS  Google Scholar 

  • Rahman M, Mostofa MG, Keya SS, Rahman A, Das AK, Islam R et al (2021) Acetic acid improves drought acclimation in soybean: an integrative response of photosynthesis, osmoregulation, mineral uptake and antioxidant defense. Physiol Plant 172(2):334–350

    CAS  PubMed  Google Scholar 

  • Ramos I, Esteban E, Lucena JJ, Gárate A (2002) Cadmium uptake and subcellular distribution in plants of Lactuca sp. Cd–Mn interaction. Plant Sci 162(5):761–767

    CAS  Google Scholar 

  • Robinson BH, Lombi E, Zhao FJ, McGrath SP (2003) Uptake and distribution of nickel and other metals in the hyperaccumulator Berkheya coddii. New Phytol 158(2):279–285

    CAS  Google Scholar 

  • Roudier F, Fedorova E, Lebris M, Lecomte P, Györgyey J, Vaubert D et al (2003) The Medicago species A2-type cyclin is auxin regulated and involved in meristem formation but dispensable for endoreduplication-associated developmental programs. Plant Physiol 131(3):1091–1103

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santos MP, Zandonadi DB, de Sa AFL, Costa EP, de Oliveira CJL, Perez LE, Façanha AR, Bressan-Smith R (2020) Abscisic acid-nitric oxide and auxin interaction modulates salt stress response in tomato roots. Theor Exp Plant Physiol 32(4):301–313

    CAS  Google Scholar 

  • Schachtman DP, Reid RJ, Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 116(2):447–453

    CAS  PubMed  PubMed Central  Google Scholar 

  • Serralta-Interian AA, de Lourdes Miranda-Ham M, Echevarría-Machado I (2020) Stimulation of root growth and enhanced nitrogenous metabolite content in habanero pepper (Capsicum chinense Jacq.) treated with ad-amino acid mixture. Theor Exp Plant Physiol 32(1):31–47

    CAS  Google Scholar 

  • Shen Q, Yu J, Fu L, Wu L, Dai F, Jiang L et al (2018) Ionomic, metabolomic and proteomic analyses reveal molecular mechanisms of root adaption to salt stress in Tibetan wild barley. Plant Physiol Biochem 123:319–330

    CAS  PubMed  Google Scholar 

  • Singh UM, Sareen P, Sengar RS, Kumar A (2013) Plant ionomics: a newer approach to study mineral transport and its regulation. Acta Physiol Plant 35(9):2641–2653

    CAS  Google Scholar 

  • Storey R, Leigh RA (2004) Processes modulating calcium distribution in citrus leaves. An investigation using X-ray microanalysis with strontium as a tracer. Plant Physiol 136(3):3838–3848

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tajima R, Abe J, Lee ON, Morita S, Lux A (2008) Developmental changes in peanut root structure during root growth and root-structure modification by nodulation. Ann Bot 101(4):491–499

    PubMed  PubMed Central  Google Scholar 

  • Thomas CL, Alcock TD, Graham NS, Hayden R, Matterson S, Wilson L et al (2016) Root morphology and seed and leaf ionomic traits in a Brassica napus L. diversity panel show wide phenotypic variation and are characteristic of crop habit. BMC Plant Biol 16(1):1–18

    Google Scholar 

  • Tian SK, Lu LL, Yang XE, Labavitch JM, Huang YY, Brown P (2009) Stem and leaf sequestration of zinc at the cellular level in the hyperaccumulator Sedum alfredii. New Phytol 182(1):116–126

    CAS  PubMed  Google Scholar 

  • Toomer OT (2018) Nutritional chemistry of the peanut (Arachis hypogaea). Crit Rev Food Sci Nutr 58(17):3042–3053

    CAS  PubMed  Google Scholar 

  • Tromp J (1962) Interactions in the absorption of ammonium, potassium, and sodium ions by wheat roots. Acta Bot Neerl 11(2):147–192

    Google Scholar 

  • Vaculík M, Konlechner C, Langer I, Adlassnig W, Puschenreiter M, Lux A, Hauser MT (2012) Root anatomy and element distribution vary between two Salix caprea isolates with different Cd accumulation capacities. Environ Pollut 163:117–126

    PubMed  PubMed Central  Google Scholar 

  • Wakeel A, Farooq M, Qadir M, Schubert S (2011) Potassium substitution by sodium in plants. Crit Rev Plant Sci 30(4):401–413

    CAS  Google Scholar 

  • Wang YH, Acharya A, Burrell AM, Klein RR, Klein PE, Hasenstein KH (2013) Mapping and candidate genes associated with saccharification yield in sorghum. Genome 56(11):659–665

    CAS  PubMed  Google Scholar 

  • Weigel HJ, Jäger HJ (1980) Subcellular distribution and chemical form of cadmium in bean plants. Plant Physiol 65(3):480–482

    CAS  PubMed  PubMed Central  Google Scholar 

  • White PJ, Broadley MR (2003) Calcium in plants. Ann Bot 92(4):487–511

    CAS  PubMed  PubMed Central  Google Scholar 

  • Woll K, Borsuk LA, Stransky H, Nettleton D, Schnable PS, Hochholdinger F (2005) Isolation, characterization, and pericycle-specific transcriptome analyses of the novel maize lateral and seminal root initiation mutant rum1. Plant Physiol 139(3):1255–1267

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang SY, Huang TK, Kuo HF, Chiou TJ (2017) Role of vacuoles in phosphorus storage and remobilization. J Exp Bot 68(12):3045–3055

    CAS  PubMed  Google Scholar 

  • Yoshimoto N, Takahashi H, Smith FW, Yamaya T, Saito K (2002) Two distinct high-affinity sulfate transporters with different inducibilities mediate uptake of sulfate in Arabidopsis roots. Plant J 29(4):465–473

    CAS  PubMed  Google Scholar 

  • Zhong H, Läuchli A (1994) Spatial distribution of solutes, K, Na, Ca and their deposition rates in the growth zone of primary cotton roots: effects of NaCl and CaCl2. Planta 194(1):34–41

    CAS  Google Scholar 

  • Zhu Z, Li D, Wang P, Li J, Lu X (2020) Transcriptome and ionome analysis of nitrogen, phosphorus and potassium interactions in sorghum seedlings. Theor Exp Plant Physiol 32(4):271–285

    CAS  Google Scholar 

Download references

Acknowledgements

I acknowledge my dissertation committee member Dr. Karl H. Hasenstein for helping me with the ICP-OES analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aniruddha Acharya.

Ethics declarations

Conflict of interest

Authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acharya, A., Pesacreta, T.C. Localization of seed-derived and externally supplied nutrients in peanut seedling root. Theor. Exp. Plant Physiol. 34, 37–51 (2022). https://doi.org/10.1007/s40626-021-00227-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40626-021-00227-9

Keywords

Navigation