Skip to main content
Log in

Christoffel functions, orthogonal polynomials, and Nevai's conjecture for Freud weights

  • Published:
Constructive Approximation Aims and scope

Abstract

We obtain upper and lower bounds for Christoffel functions for Freud weights by relatively new methods, including a new way to estimate discretization of potentials. We then deduce bounds for orthogonal polynomials onℝ thereby largely resolving a 1976 conjecture of P. Nevai. For example, let W:=e −Q, whereQ:ℝ→ℝ is even and continuous inℝ, Q" is continuous in (0, ∞) andQ '>0 in (0, ∞), while, for someA, B,

$$1< A \leqslant \frac{{(d/dx)(xQ'(x))}}{{Q'(x)}} \leqslant B,x \in (0,\infty )$$

Leta n denote thenth Mhaskar-Rahmanov-Saff number forQ, andL>0. Then, uniformly forn≥1 and |x|≤a n (1+Ln −2/3),

$$\lambda _n (W^2 ,x) \sim \frac{{a_n }}{n}W^2 (x)\left( {\max \left\{ {n^{ - 2/3} ,1 - \frac{{|x|}}{{a_n }}} \right\}} \right)^{ - 1/2}$$

Moreover, for all x εℝ, we can replace ∼ by ≥. In particular, these results apply toW(x):=exp(-|x|α), α>1. We also obtain lower bounds for allx εℝ, when onlyA>0, but this necessarily requires a more complicated formulation.

We deduce that thenth orthonormal plynomialp n (W 2, ·). forW 2 satisfies

$$\mathop {\sup }\limits_{x \in \mathbb{R}} |p_n (W^2 ,x)|W(x)\left| {1 - \frac{{|x|}}{{a_n }}} \right|^{1/4} \sim a_n^{ - 1/2}$$

and

$$\mathop {\sup }\limits_{x \in \mathbb{R}} |p_n (W^2 ,x)|W(x) \sim a_n^{ - 1/2} n^{1/6} .$$

In particular, this applies toW(x):=exp(-|x|α), α>1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. C. Bauldry (1990):Estimates of asymmetric Freud polynomials on the real line. J. Approx. Theory,63:225–237.

    Google Scholar 

  2. S. S. Bonan (1983):Applications of G. Freud's theory I. In: Approximation Theory IV (C. K. Chui, L. L. Schumaker, J. D. Ward, eds.). New York: Academic Press, pp. 347–351.

    Google Scholar 

  3. S. S. Bonan, D. S. Clark (1990):Estimates of the Hermite and the Freud polynomials. J. Approx. Theory,63:210–224.

    Google Scholar 

  4. J. Clunie, T. Kövari (1968):On integral functions having prescribed asymptotic growth II. Canad. J. Math.,20:7–20.

    Google Scholar 

  5. G. Freud (1977):On estimations of the greatest zeros of orthogonal polynomials. Acta Math. Acad. Sci. Hungar.,25:99–107.

    Google Scholar 

  6. G. Freud (1977):On Markov-Bernstein type inequalities and their applications. J. Approx. Theory,19:22–37.

    Google Scholar 

  7. G. Freud, A. Giroux, Q. I. Rahman (1978):On approximation by polynomials with weight exp(-|x|). Canad. J. Math.,30:358–372 (in French).

    Google Scholar 

  8. T. Ganelius (1976):Rational approximation in the complex plane and on the line. Ann. Acad. Sci. Fenn.,2:129–145.

    Google Scholar 

  9. A. Knopfmacher, D. S. Lubinsky (1987):Mean convergence of Lagrange interpolation for Freud's weights with application to product integration rules. J. Comput. Appl. Math.,17:79–103.

    Google Scholar 

  10. A. L. Levin, D. S. Lubinsky (1987):Canonical products and the weights exp(-|x|α), α>1,with applications. J. Approx. Theory,49:149–169.

    Google Scholar 

  11. A. L. Levin, D. S. Lubinsky (1987):Weights on the real line that admit good relative polynomial approximation, with applications. J. Approx. Theory.,49:170–195.

    Google Scholar 

  12. A. L. Levin, D. S. Lubinsky (1990):L Markov and Bernstein inequalities for Freud weights. SIAM J. Math. Anal.,21:1065–1082.

    Google Scholar 

  13. D. S. Lubinsky (1986):Gaussian quadrature, weights on the whole real line, and even entive functions with non-negative even order derivatives. J. Approx. Theory,46:297–313.

    Google Scholar 

  14. D. S. Lubinsky (1989): Strong Asymptotics for Extremal Errors and Polynomials Associated with Erdös-Type Weights. Pitman Research Notes in Mathematics, vol. 202. Harlow, Essex: Longman.

    Google Scholar 

  15. D. S. Lubinsky, E. B. Saff (1988): Strong Asymptotics for Extremal polynomials Associated with Exponential Weights. Lecture Notes in Mathematics, vol. 1305. Berlin: Springer-Verlag.

    Google Scholar 

  16. A. Mate, P. Nevai, V. Totik (1986):Asymptotics for the zeros of orthogonal polynomials associated with infinite intervals. J. London Math. Soc.,33:303–310.

    Google Scholar 

  17. H. N. Mhaskar (1990):Bounds for certain Freud-type orthogonal polynomials. J. Approx. Theory,63:238–254.

    Google Scholar 

  18. H. N. Mhaskar, E. B. Saff (1984):Extremal Problems for Polynomials with Exponential Weights. Trans. Amer. Math. Soc.,285:203–234.

    Google Scholar 

  19. H. N. Mhaskar, E. B. Saff (1985):Where does the sup-norm of a weighted polynomial live? Constr. Approx.,1:71–91.

    Google Scholar 

  20. H. N. Mhaskar, E. B. Saff (1987):Where does the L p -norm of a weighted polynomial live? Trans. Amer. Math. Soc.,303:109–124.

    Google Scholar 

  21. P. Nevai (1976):Lagrange interpolation at the zeros of orthogonal polynomials. In: Approximation Theory II (G. G. Lorentz, C. K. Chui, and L. L. Schumaker, eds.). New York: Academic Press, pp. 163–201.

    Google Scholar 

  22. P. Nevai (1979): Orthogonal Polynomials. Memoirs of the American Mathematical Society, no. 213. Providence, RI: American Mathematical Society.

    Google Scholar 

  23. P. Nevai (1984):Asymptotics for orthogonal polynomials associated with exp(−x 4). SIAM J. Math. Anal.,15:1177–1187.

    Google Scholar 

  24. P. Nevai (1986):Geza Freud, orthogonal polynomials and Christoffel functions. A case study. J. Approx. Theory,48:3–167.

    Google Scholar 

  25. P. Nevai, V. Totik (1986):Weighted polynomial inequalities. Constr. Approx.,2:113–127.

    Google Scholar 

  26. D. J. Newman, A. R. Reddy (1977):Rational approximation to |x|/(1+x 2m)on (−∞, ∞). J. Approx. Theory,19:231–238.

    Google Scholar 

  27. E. A. Rahmanov (1984):On asymptotic properties of polynomials orthogonal on the real axis. Math. USSR-Sb.,47:155–193.

    Google Scholar 

  28. E. A. Rahmanov (1991):Strong asymptotics for orthogonal polynomials associated with exponential weights onℝ. Manuscript.

  29. R. C. Sheen (1987):Plancherel-Rotach type asymptotics for orthogonal polynomials associated with exp(−x 6/6). J. Approx. Theory,50:232–293.

    Google Scholar 

  30. G. A. Szegö (1975). Orthogonal Polynomials, 4th edn. American Mathematical Society Colloquium Publications, vol. 23. Providence, RI: American Mathematical Society.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Vilmos Totik

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levin, A.L., Lubinsky, D.S. Christoffel functions, orthogonal polynomials, and Nevai's conjecture for Freud weights. Constr. Approx 8, 463–535 (1992). https://doi.org/10.1007/BF01203463

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01203463

AMS classification

Key words and phrases

Navigation