Skip to main content
Log in

Estimates for \(p\)-adic fractional integral operators and their commutators on \(p\)-adic mixed central Morrey spaces and generalized mixed Morrey spaces

  • Original Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In this paper, we define the \(p\)-adic mixed Morrey type spaces and study the boundedness of \(p\)-adic fractional integral operators and their commutators on these spaces. More precisely, we first obtain the boundedness of \(p\)-adic fractional integral operators and their commutators on \(p\)-adic mixed central Morrey spaces. Moreover, we further extend these results on \(p\)-adic generalized mixed Morrey spaces, when a symbol function \(b\) belongs to the \(p\)-adic generalized mixed Campanato spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akdemir, A., Butt, S., Nadeem, M., Ragusa, M.: New general variants of Chebyshev type inequalities via generalized fractional integral operators. Mathematics 9, 122 (2021)

    Article  Google Scholar 

  2. Benedek, A., Panzone, R.: The space \(L^p\), with mixed norm. Duke Math. J. 28(3), 301–324 (1961)

    Article  MathSciNet  Google Scholar 

  3. Brekke, L., Freund, P.G.O.: \(p\)-Adic numbers in physics. Phys. Rep. 233(1), 1–66 (1993)

    Article  MathSciNet  Google Scholar 

  4. Chiarenza, F., Frasca, M., Longo, P.: Interior \(W^{2, p}\)-estimates for nondivergence elliptic equations with discontinuous coefficients. Ricerche Mat. 40, 149–168 (1991)

    MathSciNet  Google Scholar 

  5. Delgado, J., Valdes, J., Reyes, E., Vivas-Cortez, M.: The Minkowski inequality for generalized fractional integrals. Appl. Math. Inf. Sci. 15, 1–7 (2021)

    Article  MathSciNet  Google Scholar 

  6. Dragovich, B., Joksimovi\(\acute{c}\), D.: On possible uses of \(p\)-adic analysis in econometrics. Megatrend Revija 4(2), 5–16 (2007)

  7. Dragovich, B.: \(p\)-adic and adelic cosmology: \(p\)-adic origin of dark energy and dark matter, \(p\)-adic mathematical physics. AIP Conf. Proc. 826, 25–42 (2006)

    Article  Google Scholar 

  8. Fernandez, A., Mohammed, P.: Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels. Math. Method. Appl. Sci. 44, 8414–8431 (2021)

    Article  MathSciNet  Google Scholar 

  9. Grafakos, L.: Modern Fourier Analysis, vol. 250 of Graduate Texts in Mathematics, Springer, New York (2008)

  10. Gurbuz, M., Tasdan, Y., Set, E.: Ostrowski type inequalities via the Katugampola fractional integrals. AIMS Math. 5, 42–53 (2020)

    Article  MathSciNet  Google Scholar 

  11. Haran, S.: Riesz potentials and explicit sums in arithmetic. Invent. Math. 101, 697–703 (1990)

    Article  MathSciNet  Google Scholar 

  12. Haran, S.: Analytic potential theory over the p-adics. Ann. Inst. Fourier (Grenoble) 43, 905–944 (1993)

    Article  MathSciNet  Google Scholar 

  13. Hussain, A., Sarfraz, N., Khan, I., Alsubie, A., Hamadneh, N.N.: The boundedness of commutators of rough \(p\)-adic fractional Hardy type operators on Herz-type spaces. J. Ineq. Appl. 2021, 123 (2021)

    Article  MathSciNet  Google Scholar 

  14. Hussain, A., Ajaib, A.: Some results for the commutators of generalized Hausdorff operator. J. Math. Ineq. 13, 1129–1146 (2019)

    Article  MathSciNet  Google Scholar 

  15. Hussain, A., Asim, M., Aslam, M., Jarad, F.: Commutators of the fractional Hardy operator on weighted variable Herz-Morrey spaces. J. Funct. Spaces 2021, Article ID 9705250 (2021)

  16. Kilbas, A., Srivastava, H.M., Trujillo, J.J.: Theory and Application of Fractional Differential Equations. Elsevier Science Limited. 204 (2006)

  17. Khrennikov, A.Y.: \(p\)-Adic Valued Distributions in Mathematical Physics. Kluwer Academic Publishers, Dordrecht (1994)

    Book  Google Scholar 

  18. Khrennikov, A.Y.: Information Dynamics in Cognitive, Psychological, Social, and Anomalous Phenomena. Kluwer Academic Publishers, Dordrecht (2004)

    Book  Google Scholar 

  19. Khrennikov, A.Y., Kotovich, N.V.: Representation and compression of images with the aid of the \(m\)-adic coordinate system. Dokl. Akad. Nauk. 387(2), 159–163 (2002)

    MathSciNet  Google Scholar 

  20. Khrennikov, A.Y.: Non-Archimedean Analysis, Quantum Paradoxes. Dynamical Systems and Biological Models. Kluwer Academic Publishers, Dordrecht (1997)

    Google Scholar 

  21. Khrennikov, A.Y.: Probabilistic pathway representation of cognitive information. J. Theor. Bio. 231, 597–613 (2004)

    Article  Google Scholar 

  22. Kochubei, A.N.: Pseudo-Differential Equations and Stochastics over Non-Archimedean Fields. Marcel Dekker, New York (2001)

    Book  Google Scholar 

  23. Kim, Y.C.: A simple proof of the \(p\)-adic version of the Sobolev embedding theorem. Commun. Korean Math. Soc. 25, 27–36 (2010)

    Article  MathSciNet  Google Scholar 

  24. Kozyrev, S.V.: Toward an ultrametric theory of turbulence. Theor. Math. Phys. 157(3), 1711–1720 (2008)

    Article  Google Scholar 

  25. Makris, N., Constantinou, M.C.: Models of viscoelasticity with complex order derivatives. J. of Engineering Mechanics 119(7), 1453–1464 (1993)

    Article  Google Scholar 

  26. Mo, H., Wang, X., Ma, R.: Commutator of Riesz potential in \(p\)-adic generalized Morrey spaces. Front. Math. China 13, 633–645 (2018)

    Article  MathSciNet  Google Scholar 

  27. Morrey, C.B.: On the solutions of quasi-linear elliptic partial differential equations. Trans. Amer. Math. Soc. 43(1), 126–166 (1938)

    Article  MathSciNet  Google Scholar 

  28. Nogayama, T., Ono, T., Salim, D., Sawano, Y.: Atomic decomposition for mixed Morrey spaces. J. Geom. Anal. 31(9), 9338–9365 (2021)

    Article  MathSciNet  Google Scholar 

  29. Nogayama, T.: Mixed Morrey spaces. Positivity 23(4), 961–1000 (2019)

    Article  MathSciNet  Google Scholar 

  30. Nigmatullin, R.R., Ceglie, C., Maione, G., Striccoli, D.: Reduced fractional modeling of \(3\)d video streams: the FERMA approach. Nonlinear Dyn. 80(4), 1869–1882 (2015)

    Article  Google Scholar 

  31. Pennes, H.H.: Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Phys. 1(2), 93–122 (1948)

    Google Scholar 

  32. Samko, N.: Weighted fractional Hardy operators and their commutators on generalized Morrey spaces over Quasi-Metric measure spaces. Fract. Calc. Appl. Anal. 24, 1643–1669 (2021). https://doi.org/10.1515/fca-2021-0071

    Article  MathSciNet  Google Scholar 

  33. Samraiz, M., Afzal, M., Iqbal, S., Kashuri, A.: Opial-type inequalities for generalized integral operators with special kernels in fractional calculus. Commun. Math. Appl. 9, 421–431 (2018)

    Google Scholar 

  34. Sarfraz, N., Aslam, M.: Some estimates for \(p\)-adic fractional integral operator and its commutators on \(p\)-adic Herz spaces with rough kernels. Fract. Calc. Appl. Anal. 25, 1734–1755 (2022). https://doi.org/10.1007/s13540-022-00064-w

    Article  MathSciNet  Google Scholar 

  35. Sarfraz, N., Aslam, M., Zaman, M., Jarad, F.: Estimates for \(p\)-adic fractional integral operator and its commutators on \(p\)-adic Morrey-Herz spaces. J. Ineq. Appl. 2022, 92 (2022)

    Article  MathSciNet  Google Scholar 

  36. Sawano, Y., Fazio, G.D., Hakim, D.I.: Morrey Spaces: Introduction and Applications to Integral Operators and PDE’s, Volume I & II, CRC Press (2020)

  37. Set, E., Akdemir, A., Demirci, F.: Grüss type inequalities for fractional integral operator involving the extended generalized Mittag-Leffler function. Appl. Comput. Math. 19, 402–414 (2020)

    MathSciNet  Google Scholar 

  38. Stein, M.E.: Singular Integrals and Differentiability Properties of Functions. Princeton Univ. Press. Princeton, New Jersey (1970)

    Google Scholar 

  39. Taibleson, M.H.: Fourier Analysis on Local Fields. Princeton University Press, Princeton (1975)

    Google Scholar 

  40. Tenreiro Machado, J.A., Kiryakova, V.: The chronicles of fractional calculus. Fract. Calc. Appl. Anal. 20(2), 307–336 (2017). https://doi.org/10.1515/fca-2017-0017

    Article  MathSciNet  Google Scholar 

  41. Thi, H.N., Van, D.D.: Two-weighted estimates for p-adic Riesz potential and its commutators on Morrey-Herz spaces. Fract. Calc. Appl. Anal. 26, 2618–2650 (2023). https://doi.org/10.1007/s13540-023-00205-9

    Article  MathSciNet  Google Scholar 

  42. Valerio, D., Tenreiro Machado, J.A., Kiryakova, V.: Some pioneers of the applications of fractional calculus. Fract. Calc. Appl. Anal. 17(2), 552–578 (2014). https://doi.org/10.2478/s13540-014-0185-1

    Article  MathSciNet  Google Scholar 

  43. Vladimirov, V.S., Volovich, I.V., Zelenov, E.I.: \(p\)-Adic Analysis and Mathematical Physics. World Scientific, Singapore (1994)

    Book  Google Scholar 

  44. Volosivets, S.S.: Maximal function and Reisz potential on \(p\)-adic linear spaces. \(p\)-Adic Numb. Ultrametric Anal. Appl. 5(3), 226–234 (2013)

  45. Wang, H.: Estimates for fractional integral operators and linear commutators on certain weighted amalgam spaces. J. Funct. Spaces 2020, Article ID 2697104 (2020)

  46. Wei, M.: Estimates for weighted Hardy-Littlewood averages and their commutators on mixed central Morrey spaces. J. Math. Ineq. 16(2), 659–669 (2022)

    Article  MathSciNet  Google Scholar 

  47. Wei, M.: Fractional integral operator and its commutator on generalized Morrey spaces associated with ball Banach function spaces. Fract. Calc. Appl. Anal. 26, 2318–2336 (2023). https://doi.org/10.1007/s13540-023-00188-7

    Article  MathSciNet  Google Scholar 

  48. Wu, Q.Y., Mi, L., Fu, Z.W.: Hardy-Littlewood-Sobolev inequalities on \(p\)-adic central Morrey spaces. J. Funct. Spaces 2015, Article ID 419532 (2015)

  49. Wu, B.: The \(2\)-Adic derivatives and fractal dimension of Takagi-Like function on \(2\)-series field. Fract. Calc. Appl. Anal. 23, 875–885 (2020). https://doi.org/10.1515/fca-2020-0044

    Article  MathSciNet  Google Scholar 

  50. Wu, Q.Y., Mi, L., Fu, Z.W.: Boundedness of \(p\)-adic Hardy operators and their commutators on \(p\)-adic central Morrey and BMO spaces. J. Funct. Spaces 2013, Article ID 359193 (2013)

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, Abha 61413, Saudi Arabia for funding this work through research groups program under grant number R.G. P-2/99/44.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naqash Sarfraz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarfraz, N., Aslam, M. & Malik, Q.A. Estimates for \(p\)-adic fractional integral operators and their commutators on \(p\)-adic mixed central Morrey spaces and generalized mixed Morrey spaces. Fract Calc Appl Anal (2024). https://doi.org/10.1007/s13540-024-00274-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13540-024-00274-4

Keywords

Mathematics Subject Classification

Navigation