Skip to main content
Log in

On the relationship of thermodynamic parameters with the buried surface area in protein-ligand complex formation

  • Published:
Bioscience Reports

Abstract

Prediction of thermodynamic parameters of protein-protein and antigen-antibody complex formation from high resolution structural parameters has recently received much attention, since an understanding of the contributions of different fundamental processes like hydrophobic interactions, hydrogen bonding, salt bridge formation, solvent reorganization etc. to the overall thermodynamic parameters and their relations with the structural parameters would lead to rational drug design. Using the results of the dissolution of hydrocarbons and other model compounds the changes in heat capacity (ΔCp), enthalpy (ΔH) and entropy (ΔS) have been empirically correlated with the polar and apolar surface areas buried during the process of protein folding/unfolding and protein-ligand complex formation. In this regard, the polar and apolar surfaces removed from the solvent in a protein-ligand complex have been calculated from the experimentally observed values of changes in heat capacity (ΔCp) and enthalpy (ΔH) for protein-ligand complexes for which accurate thermodynamic and high resolution structural data are available, and the results have been compared with the x-ray crystallographic observations. Analyses of the available results show poor correlation between the thermodynamic and structural parameters. Probable reasons for this discrepancy are mostly related with the reorganization of water accompanying the reaction which is indeed proven by the analyses of the energetics of the binding of the wheat germ agglutinin to oligosaccharides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hibbits, K. A., Gill, D. S. and Willson, R. C. (1994)Biochemistry 33:3584–3590.

    Google Scholar 

  2. Kelly, R. F. and O'Connell, M. P. (1993)Biochemistry 32:6828–6835.

    Google Scholar 

  3. Kelly, R. F., O'Connell, M. P., Carter, P., Presta, L., Eigenbrot, C., Covarrubias, M., Snedecor, B., Bourell, J. H. and Vetterlein, D. (1992)Biochemistry 31:5434–5441.

    Google Scholar 

  4. Brummell, D. A., Sharma, V. P., Anand, N. N., Bilous, D., Dubuc, G., Michniewicz, J., MacKenzie, C. R., Sadowska, J., Sigurskjold, B. W., Sinnott, B., Young, N. M., Bundel, D. R. and Narang, S. A. (1993)Biochemistry 32:1180–1187.

    Google Scholar 

  5. Connelly, P. R. and Thompson, J. A. (1992)Proc. Natl. Acad. Sci., USA,89:4781–4785.

    Google Scholar 

  6. Bhat, T. N., Bentley, G. A., Boulot, G., Greene, M. A., Tello, D., Dall'Acqua, W., Souchon, H., Schwarz, F. P. and Mariuzza, R. A. (1994)Proc. Natl. Acad. Sci., USA,91:1089–1093.

    Google Scholar 

  7. Ysern, X., Fields, B. A., Bhat, T. N., Goldbaum, F. A., Dall'Acqua, W., Schwarz, F. P., Poljak, R. J. and Mariuzza, R. A. (1994)J. Mol. Biol. 234:496–500.

    Google Scholar 

  8. Murphy, K. P., Xie, D., Garcia, K. C., Amzel, L. M. and Freire, E. (1993)Proteins: Structure, Function and Genetics 15: 113–120.

    Google Scholar 

  9. Amit, A. G., Mariuzza, R. A., Phillips, S. E. V. and Poljak, R. J. (1986)Science,233:747–753.

    Google Scholar 

  10. Sheriff, S., Silverton, E. W., Padlon, E. A., Cohen, G. H., Smith-Gill, S. J., Finzel, B. C. and Davis, D. R. (1987)Proc. Natl. Acad. Sci., USA,84:8075–8079.

    Google Scholar 

  11. Padlon, E. A., Silverton, E. W., Sheriff, S., Cohen, G. H., Smith-Gill, S. J. and Davis, D. R. (1989)Proc. Natl. Acad. Sci., USA,86:5938–5942.

    Google Scholar 

  12. Bhat, T. N., Bentley, G. A., Fischmann, T. O., Boulot, G. and Poljak, R. J. (1990)Nature,347:483–485.

    Google Scholar 

  13. Bentley, G. A., Fischmann, T. O., Bhat, T. N., Boulot, G., Mariuzza, R. A., Phillips, S. E. V., Tello, D. and Poljak, R. J. (1991)J. Biol. Chem.,266:12915–12920.

    Google Scholar 

  14. Garcia, K. C., Ronco, P. M., Verroust, P. J., Brunger, A. T. and Amzel, L. M. (1992)Science,257:502–507.

    Google Scholar 

  15. Van Duyne, G. D., Standaert, R. F., Karplus, P. A., Schreiber, S. L. and Clardy, J. (1991)Science,252:839–842.

    Google Scholar 

  16. Van Duyne, G. D., Standaert, R. F., Karplus, P. A., Schreiber, S. L. and Clardy, J. (1991)J. Am. Chem. Soc.,131:7433–7434.

    Google Scholar 

  17. Baldwin, R. L. (1986)Proc. Natl. Acad. Sci., USA,63:8069–8072.

    Google Scholar 

  18. Anantharam, V., Patanjali, S. R., Swamy, M. J., Goldstein, I. J. and Surolia, A. (1986)J. Biol. Chem.,261:14621–14627.

    Google Scholar 

  19. Privalov, P. L. and Gill, S. J. (1988)Adv. Protein Chem.,39:191–234.

    Google Scholar 

  20. Murphy, K. P. and Freire, E. (1992)Adv. Protein Chem.,43: 313–361.

    Google Scholar 

  21. Wiseman, T., Williston, S., Brandt, J. F. and Lin, L. N.Anal. Biochem.,179:131–137.

  22. Ramakumar, R., Surolia, A. and Podder, S. K. (1995)Biochem. J.,308:237–241.

    Google Scholar 

  23. Yang, C. P. (1990) Omega Data in Origin p66, Microcal Inc. Northampton, MA USA.

    Google Scholar 

  24. Murphy, K. P., Bhakuni, V., Xie, D. and Freire, E. (1992)J. Mol. Biol.,227:293–306.

    Google Scholar 

  25. Murphy, K. P., Privalov, P. L. and Gill, S. J. (1990)Science,247:559–561.

    Google Scholar 

  26. Varadarajan, R., Connelly, P. R., Strutevant, J. M. and Richards, F. M. (1992)Biochemistry,31:1421–1426.

    Google Scholar 

  27. Livanh, O., Bayer, E. A., Wilmek, M. and Sussman, J. L. (1993)Proc. Natl. Acad. Sci. USA,90:5076–5080.

    Google Scholar 

  28. Hard, T., Kellenbach, E., Boelens, R., Maler, B. A., Dahlman, K., Freedman, L. P., Carlstedt-Duke, J., Yamamoto, K. R., Gustafsson, J-Å. and Kaptein, R. (1990)Science,249:157–160.

    Google Scholar 

  29. Hard, T., Kellenbach, E., Boelens, R., Kaptein, R., Dahlman, K., Carlstedt-Duke, J., Freedman, L. P., Maler, B. A., Hyde, E. I., Gustafsson, J Å., Yamamoto, K. R. and Kaptein, R. (1990)Biochemistry,29:9015–9023.

    Google Scholar 

  30. Quiocho, F. A., Wilson, D. K. and Vyas, N. K. (1989)Nature,340:404–407.

    Google Scholar 

  31. James, M. N. G., Sielecke, A. R., Brayer, G. D., Delbaere, L. T. J. and Bauer, C. A. (1980)J. Mol. Biol.,144:43–88.

    Google Scholar 

  32. Bolognesi, M., Gatti, G., Menegatti, E., Guarneri, M., Marquart, M., Papamokos, E. and Huber, R. (1982)J. Mol. Biol.,162:839–868.

    Google Scholar 

  33. Fujinaga, M., James, M. N. G. (1987)J. Mol. Biol.,195:373–396.

    Google Scholar 

  34. McPhalen, C. A. and James, M. N. G. (1988)Biochemistry,27:6582–6598.

    Google Scholar 

  35. Puri, K. D. and Surolia, A. (1994)Pure and Appl. Chem.,66:497–502.

    Google Scholar 

  36. Bains, G., Lee, R. T., Lee, Y. C. and Freire, E. (1992)Biochemistry,31:12624–12628.

    Google Scholar 

  37. Schwarz, F. P., Puri, K. D. and Surolia, A. (1991)J. Biol Chem.,266: 24344–24350.

    Google Scholar 

  38. Schwarz, F. P., Puri, K. D., Bhat, R. G. and Surolia, A. (1993)J. Biol. Chem.,268:7668–7667.

    Google Scholar 

  39. Kornblatt, J. A. and Hoa, G. H. B. (1990)Biochemistry,29:9370–9376.

    Google Scholar 

  40. Colombo, M. F., Ran, D. C. and Parsegian, V. A. (1992)Science,256:655–659.

    Google Scholar 

  41. Rand, R. P., Fuller, N. L., Butko, P., Francis, G. and Nicholls, P. (1993)Biochemistry,32:5925–5929.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singha, N.C., Surolia, N. & Surolia, A. On the relationship of thermodynamic parameters with the buried surface area in protein-ligand complex formation. Biosci Rep 16, 1–10 (1996). https://doi.org/10.1007/BF01200996

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01200996

Key words

Navigation