Skip to main content
Log in

Computational prediction of the preferred glycation sites of model helical peptides derived from human serum albumin (HSA) and lysozyme helix 4 (LH4)

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The preferred glycation sites of model helical peptides derived from human serum albumin and lysozyme helix 4 have been established by resorting to the calculation of some conceptual DFT descriptors like the Fukui function indexes, the condensed dual descriptor \(\Delta {f}({\mathbf {r}})\) and the electrophilic and nucleophilic Parr functions. The results were obtained within the framework of QM:MM calculations performed through the ONIOM method in the presence of water as a solvent. For the sake of comparison, additional calculations were done on a model \(\beta \)-hairpin peptide (TIMP2). The pKa’s of the different lysine residues can be qualitatively predicted on the light of the obtained values for the conceptual DFT descriptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Howard MJ, Smales CM (2005) J Biol Chem 280(24):22582

    Article  CAS  Google Scholar 

  2. Povey JF, Howard MJ, Williamson RA, Smales CM (2008) J Struct Biol 161:151

    Article  CAS  Google Scholar 

  3. Glossman-Mitnik D (2013) Chem Cent J 7:155

    Article  Google Scholar 

  4. Martínez-Araya JI, Salgado-Morán G, Glossman-Mitnik D (2013) J Phys Chem B 117(21):6639

    Article  Google Scholar 

  5. Glossman-Mitnik D (2013) Proc Comput Sci 18:816

    Article  Google Scholar 

  6. Martínez-Araya JI, Salgado-Morán G, Glossman-Mitnik D (2013) J Chem 85:850270

    Google Scholar 

  7. Glossman-Mitnik D (2014) Eur Int J Sci Technol 3(9):195

    Google Scholar 

  8. Glossman-Mitnik D (2014) J Mol Model 20(7):2316

    Article  Google Scholar 

  9. Frau J, Muñoz F, Glossman-Mitnik D (2016) Molecules 21(12):1650

    Article  CAS  Google Scholar 

  10. Parr R, Yang W (1984) J Am Chem Soc 106:4049

    Article  CAS  Google Scholar 

  11. Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793

    Article  CAS  Google Scholar 

  12. Parr R, Szentpaly L, Liu S (1999) J Am Chem Soc 121:1922

    Article  CAS  Google Scholar 

  13. Gázquez J, Cedillo A, Vela A (2007) J Phys Chem A 111(10):1966

    Article  Google Scholar 

  14. Chattaraj P, Chakraborty A, Giri S (2009) J Phys Chem A 113(37):10068

    Article  CAS  Google Scholar 

  15. Morell C, Grand A, Toro-Labbé A (2005) J Phys Chem A 109:205

    Article  CAS  Google Scholar 

  16. Morell C, Grand A, Toro-Labbé A (2006) Chem Phys Lett 425:342

    Article  CAS  Google Scholar 

  17. Cárdenas C, Rabi N, Ayers P, Morell C, Jaramillo P, Fuentealba P (2009) J Phys Chem A 113:8660

    Article  Google Scholar 

  18. Toro-Labbé A (ed) (2007) Theoretical aspects of chemical reactivity, vol 19. Elsevier, Amsterdam

    Google Scholar 

  19. Ayers P, Morell C, De Proft F, Geerlings P (2007) Chem Eur J 13:8240

    Article  CAS  Google Scholar 

  20. Morell C, Ayers P, Grand A, Gutiérrez-Oliva S, Toro-Labbé A (2008) Phys Chem Chem Phys 10:7239

    Article  CAS  Google Scholar 

  21. Morell C, Hocquet A, Grand A, Jamart-Grégoire B (2008) J Mol Struct THEOCHEM 849:46

    Article  CAS  Google Scholar 

  22. Domingo LR, Pérez P, Sáez J (2013) RSC Adv 3:1486

    Article  CAS  Google Scholar 

  23. Chamorro E, Pérez P, Domingo LR (2013) Chem Phys Lett 582:141

    Article  CAS  Google Scholar 

  24. Domingo LR, Ríos-Gutiérrez M, Pérez P (2016) Molecules 21:748

    Article  Google Scholar 

  25. Bhattacharya AA, Grune T, Curry S (2000) J Mol Biol 303(5):721

    Article  CAS  Google Scholar 

  26. Muskett FW, Frenkiel TA, Feeney J, Freedman RB, Carr MD, Williamson RA (1998) J Biol Chem 273(34):21736

    Article  CAS  Google Scholar 

  27. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79(2):926

    Article  CAS  Google Scholar 

  28. Bussi G, Donadio D, Parrinello M (2007) J Chem Phys 126(1):014101

    Article  Google Scholar 

  29. Parrinello M, Rahman A (1981) J Appl Phys 52(12):7182

    Article  CAS  Google Scholar 

  30. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) J Comput Chem 18(12):1463

    Article  CAS  Google Scholar 

  31. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang J, Kollman P (2003) J Comput Chem 24(16):1999

    Article  CAS  Google Scholar 

  32. Darden T, York D, Pedersen L (1993) J Chem Phys 98(12):10089

    Article  CAS  Google Scholar 

  33. Hockney R, Goel S, Eastwood J (1974) J Comput Phys 14(2):148

    Article  Google Scholar 

  34. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) J Chem Theory Comput 4(3):435

    Article  CAS  Google Scholar 

  35. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) J Comput Chem 26(16):1701

    Article  Google Scholar 

  36. Berendsen H, van der Spoel D, van Drunen R (1995) Comput Phys Commun 91(1):43

    Article  CAS  Google Scholar 

  37. Chung LW, Sameera WMC, Ramozzi R, Page AJ, Hatanaka M, Petrova GP, Harris TV, Li X, Ke Z, Liu F, Li HB, Ding L, Morokuma K (2015) Chem Rev 115(12):5678

    Article  CAS  Google Scholar 

  38. Marenich A, Cramer C, Truhlar D (2009) J Phys Chem B 113:6378

    Article  CAS  Google Scholar 

  39. Peverati R, Truhlar DG (2012) Phys Chem Chem Phys 14(47):16187

    Article  CAS  Google Scholar 

  40. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297

    Article  CAS  Google Scholar 

  41. Weigend F (2006) Phys Chem Chem Phys 8:1057

    Article  CAS  Google Scholar 

  42. Cornell W, Cieplak P, Bayly C, Gould I, Merz K Jr, Ferguson D, Spellmeyer D, Fox T, Caldwell J, Kollman P (1995) J Am Chem Soc 117:5179

    Article  CAS  Google Scholar 

  43. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd J, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 Revision D.01. Gaussian Inc., Wallingford, CT

    Google Scholar 

  44. Pearson R (1993) Acc Chem Res 26:250

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by CIMAV, SC and Consejo Nacional de Ciencia y Tecnología (CONACYT, Mexico) through Grant 219566/2014 for Basic Science Research and Grant 265217/2016 for a Foreign Sabbatical Leave. DGM conducted this work while a Sabbatical Fellow at the University of the Balearic Islands from which support is gratefully acknowledged. This work was cofunded by the Ministerio de Economía y Competitividad (MINECO) and the European Fund for Regional Development (FEDER) (CTQ2014-55835-R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Glossman-Mitnik.

Additional information

Published as part of the special collection of articles derived from the 10th Congress on Electronic Structure: Principles and Applications (ESPA-2016).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frau, J., Ramis, R. & Glossman-Mitnik, D. Computational prediction of the preferred glycation sites of model helical peptides derived from human serum albumin (HSA) and lysozyme helix 4 (LH4). Theor Chem Acc 136, 39 (2017). https://doi.org/10.1007/s00214-017-2070-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-017-2070-6

Keywords

Navigation