Skip to main content
Log in

Amino acid nitrogen in atmospheric aerosols: Occurrence, sources and photochemical modification

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

The presence of amino acids in atmospheric precipitation and aerosols has been noted for many years, yet relatively little is known about these or other nitrogen containing organic compounds in the atmosphere. Marine and continental rainwater analyses indicate that atmospheric aerosols, and subsequently atmospheric precipitation, may contain substantial levels of free and combined amino acids. The most likely source of amino N in the remote marine atmosphere appears to be the injection of proteinaceous material through the action of bursting bubbles at the sea-air interface or the long range transport from terrestrial sources. The capacity of these substrates to undergo photooxidation and photodegradation in the atmosphere to simpler species, such as ammonium ions, carboxylic acids, and for the S containing amino acids, oxidized forms of sulfur, has received little attention from atmospheric chemists. The photochemistry of covalently bound amino groups, particularly as found in peptides and amino acids, is discussed here with the purpose of summarizing what is known of their occurrence and their possible importance to atmospheric chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramovich, S. and Rabani, J., 1976, Pulse radiolytic investigations of peroxy radicals in aqueous solutions of acetate and glycine,J. Phys. Chem. 80, 1562–1565.

    Google Scholar 

  • Adams, G. E., Aldrich, J. E., Bisby, R. H., Cundall, R. B., Redpath, J. L., and Willson, R. L., 1972, Selective free radical reactions with proteins and enzymes: reactions of inorganic radical anions with amino acids,Radiation Res. 49, 278–289.

    Google Scholar 

  • Al-Thannon, A. A., Barton, J. P., Packer, J. E., Simic, R. J., Trumbore, C. N., and Winchester, R. V., 1974, The radiolysis of aqueous solutions of cysteine in the presence of oxygen,Int. J. Radiat. Phys. Chem. 6, 233–248.

    Google Scholar 

  • Asmus, K.-D., 1990, Sulfur-centered free radicals, in L. Packer and A. N. Glazer (eds),Oxygen Radicals in Biological Systems, Part B, Oxygen Radicals ans Antioxidants, Methods in Enzymology, Vol. 186, Academic Press, San Diego, Ca.

    Google Scholar 

  • Atherton, C. S., 1989, Organic nitrates in remote marine environments: evidence for long range transport,Geophys. Res. Lett. 16, 1289–1292.

    Google Scholar 

  • Atkinson, R., Perry, R. A., and Pitts, J. N. Jr., 1978, Rate constants for the reaction of the OH radical with (CH3)2NH, (CH3)3N, and C2H5NH2 over the temperature range 298–426 K,J. Phys. Chem. 68, 1850.

    Google Scholar 

  • Atlas, E. L., 1988, Evidence for ≥ C3 alkyl nitrates in rural and remote atmospheres,Nature 331, 426–428.

    Google Scholar 

  • Bailey, P. S., 1978,Ozonation in Organic Chemistry, Vol I, and 1982, Vol II, Academic Press, New York.

    Google Scholar 

  • Barker, D. R. and Zeitlin, H., 1972, Metal-ion concentrations in sea-surface microlayer and size separated atmospheric aerosol samples in Hawaii,J. Geophys. Res. 87, 8787–8794.

    Google Scholar 

  • Barrett, G. C. (ed.), 1985,Chemistry and Biochemistry of the Amino Acids, Chapman and Hall, New York.

    Google Scholar 

  • Barton, J. P. and Packer, J. E., 1970, The radiolysis of oxygenated cysteine solutions at neutral pH. The role of RSSR and O 2 ,Int. J. Radiat. Phys. Chem. 2, 159–166.

    Google Scholar 

  • Bezdek, H. F. and Carlucci, A. F., 1972, Surface concentration of marine bacteria,Limnol. Oceanogr. 17, 566–569.

    Google Scholar 

  • Bezdek, H. F. and Carlucci, A. F., 1974, Concentration and removal of liquid microlayers from a sea-water surface by bursting bubbles,Limnol. Oceanogr. 19, 126–132.

    Google Scholar 

  • Bielski, B. H. and Shiue, G. G., 1979, Reaction rates of superoxide radicals with the essential amino acids, in Ciba Found. Symp., 65,Oxygen Free Radicals Tissue Damage, pp. 43–56.

  • Birnbaum, M., 1976, Laser-excited fluorescence techniques in air pollution monitoring, in E. L. Whery (ed.),Modern Fluorescence Spectroscopy, 1, Plenum Press, New York.

    Google Scholar 

  • Blanchard, D. C., 1983, The production, distribution, and bacterial enrichment of the sea-salt aerosol, in P. S. Liss and W. G. N. Slinn (eds),Air-Sea Exchange of Gases and Particles, D. Reidel, Dordrecht, pp.

    Google Scholar 

  • Blanchard, D. C. and Syzdek, L. D., 1970, Mechanism for the water-to-air transfer and concentration of bacteria,Science 170, 626–628.

    Google Scholar 

  • Blanchard, D. C. and Syzdek, L. D., 1972, Concentration of bacteria in jet drops from bursting bubbles,J. Geophys. Res. 77, 5087–5099.

    Google Scholar 

  • Bonifacic, M., Mockel, H., Bahnemann, D., and Asmus, K.-D., 1975, Formation of positive ions and other primary species in the oxidation of sulfides by hydroxyl radicals,J. Chem. Soc., Perkin Trans. 2, 675–685.

    Google Scholar 

  • Buat-Menard, P., Cachier, H., and Chesselet, R., 1989, Sources of particulate carbon in the marine atmosphere, Ch. 60 in J. P. Riley, R. Chester and R. A. Duce (eds),Chemical Oceanography, Vol. 10, SEAREX: The Sea/Air Exchange Program, Academic Press, San Diego.

    Google Scholar 

  • Buxton, G. V., Greenstock, C. L., Helman, W. P., and Ross, A. B., 1988, Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (.OH/.O) in aqueous solution,J. Phys. Chem. Ref. Data 17, 513–886.

    Google Scholar 

  • Cachier, H., Buat-Menard, P., Fontugne, M., and Chesselet, R., 1986, Long-range transport of continentally derived particulate carbon in the marine atmosphere: evidence form stable carbon isotope studies,Tellus 38B, 161–177.

    Google Scholar 

  • Cadle, R. D., Crutzen, P., and Ehhalt, D., 1975, Heterogeneous chemical reactions in the stratosphere,J. Geophys. Res. 80, 3381–3385.

    Google Scholar 

  • Calvert, J. G. and Pitts, J. N. Jr., 1966,Photochemistry, Wiley, New York.

    Google Scholar 

  • Calvert, J. G. and Stockwell, W. R., 1984, Mechanisms and rates of the gas-phase oxidations of sulfur dioxide and nitrogen oxides in the atmosphere, in J. G. Calvert (ed.), SO2, NO and NO x Oxidation Mechanisms: Atmospheric Considerations, Acid Precipitation Series, Vol. 3, Butterworth, Stoneham, MA, pp. 1–62.

    Google Scholar 

  • Carlson, D. J., 1982, Surface microlayer phenolic enrichments indicate sea surface slicks,Nature, 426–429.

  • Castleman, A. W. Jr., Davis, R. D., Tang, I. N., and Ball, J. A., 1976, Heterogeneous processes and the chemistry of aerosol formation in the upper atmosphere,Proc. 4th Conf., CIAP, DOT-TSC-OSCT-75-38, US Dept. of Transportation, Washington D.C.

  • Chameides, W. L., 1979, Effect of variable energy input on nitrogen fixation in instantaneous linear discharges,Nature 277, 123–125.

    Google Scholar 

  • Chameides, W. L., 1984, The photochemistry of a remote marine stratiform cloud,J. Geophys. Res. 89, 4739–4755.

    Google Scholar 

  • Chameides, W. L. and Davis, D. D., 1982, The free radical chemistry of cloud droplets and its impact upon the composition of rain,J. Geophys. Res. 87, 4863–4877.

    Google Scholar 

  • Chameides, W. L., Stedman, D. H., Dickerson, R. R., Rush, D. W., and Cicerone, R. J., 1977, NO x production in lightning,J. Atmos. Sci. 34, 143–149.

    Google Scholar 

  • Chameides, W. L. and Tan, A., 1981, The two-dimensional diagnostic model for tropospheric OH: an uncertainty analysis,J. Geophys. Res. 86, 5209–5233.

    Google Scholar 

  • Chatgilialoglu, C., and Asmus, K.-D. (eds), 1990,Sulphur-Centered Reactive Intermediates in Chemistry and Biology, Plenum Press, New York.

    Google Scholar 

  • Chen, S. and Hoffman, M. Z., 1973, Rate constants for the reaction of the carbonate radical with compounds of biochemical interest in neutral aqueous solution,Radiation Res. 56, 40–47.

    Google Scholar 

  • Chesselet, R., Fontugne, M., Buat-Menard, P., Ezat, U., and Lambert, C.E., 1981, The origin of particulate organic carbon in the marine atmosphere as indicated by its stable carbon isotope composition,Geophys. Res. Lett. 8, 345–348.

    Google Scholar 

  • Creed, D., 1984a, b, c), The photochemistry of the near-UV absorbing amino acids, I. Tryptophan and its simple derivatives,Photochem. Photobiol. 39, 537–562; II. Tyrosine and its simple derivatives,Photochem. Photobiol. 39, 563–575; III. Cystine and its simple derivatives,Photochem. Photobiol. 39, 577–584.

    Google Scholar 

  • Crutzen, P. J., 1979, The role of NO and NO2 in the chemistry of the troposphere and stratosphere,Ann. Rev. Earth Planet. Sci. 7, 443–472.

    Google Scholar 

  • Crutzen, P. J. and Gidel, L. T., 1983, A two-dimensional photochemical model of the atmosphere, 2: The tropospheric budgets of the anthropogenic chlorocarbons, CO, CH4, CH3Cl the effect of various NO x sources on tropospheric ozone,J. Geophys. Res. 88, 6641–6661.

    Google Scholar 

  • Das, S., Schuchman, M. N., Schuchman, H.-P., and von Sonntag, C., 1987, The production of the superoxide radical anion by the OH radical induced oxidation of trimethylamine in oxygenated aqueous solution. The kinetics of the hydrolysis of (hydroxymethyl)dimethylamine,Chem. Ber. 120, 319–323.

    Google Scholar 

  • Das, S. and von Sonntag, C., 1986, The oxidation of trimethylamine by OH radicals in aqueous solution as studied by pulse radiolysis, ESR and product analysis. The reactions of alkylamine radical cation, the aminoalkyl radical and the protonated amino alkyl radical,Z. Naturforsch. B, Anorg. Chem. 41, 505–513.

    Google Scholar 

  • Dhar, N. R. and Ram, A., 1933, Variations in the amounts of ammoniacal and nitric nitrogen in rain water of different countries, and the origin of nitric nitrogen in the atmosphere,J. Indian Chem. Soc. 10, 125–133.

    Google Scholar 

  • Dillon, J., 1980, The anaerobic photolysis of tryptophan containing peptides,Photochem. Photobiol. 32, 37–39.

    Google Scholar 

  • Dillon, J., 1981, The anaerobic photolysis of tryptophan containing peptides II,Photochem. Photobiol. 33, 137–142.

    Google Scholar 

  • Dimmick, R. L., Straat, P. A., Wolochow, H., Levin, G. V., Chatigny, M. A., and Schrot, J. P., 1975, Evidence for metabolic activity of airborne bacteria,J. Aerosol Sci. 6, 387–393.

    Google Scholar 

  • Dimmick, R. L., Wolochow, H., and Chatigny, M. A., 1979, Evidence that bacteria can form new cells in airborne particles,Appl. Environ. Microbiol. 37, 924–927.

    Google Scholar 

  • Dod, R. L., Gundel, L. A., Benner, W. H., and Novakov, T., 1984, Non-ammonium reduced nitrogen species in atmospheric aerosol particles,Science of the Total Environment 36, 277–282.

    Google Scholar 

  • Doherty, D. G., Livingston, R., and Zeldes, H., 1976, Electron spin resonance study of liquids during photolysis, 21. Dipeptides,J. Am. Chem. Soc. 98, 7717–7723.

    Google Scholar 

  • Drapcho, D. L., Sisterson, D., and Kumar, R., 1983, Nitrogen fixation by lightning activity in a thunderstorm,Atmos. Environ. 17, 729–734.

    Google Scholar 

  • Duce, R. A., Liss, P. S., Merrill, J. T., Atlas, E. L., Buat-Menard, P., Hicks, B. B., Miller, J. M., Prospero, J. M., Arimoto, R., Church, T. M., Ellis, W., Galloway, J. N., Hansen, L., Jickells, T. D., Knap, A. H., Reinhardt, K. H., Schneider, B., Soudine, A., Tokos, J. J., Tsunogai, S., Wollast, R., and Zhou, M., 1991, The atmospheric input of trace species to the world ocean,Global Biogeochem. Cycles 5, 193–259.

    Google Scholar 

  • Elango, T. P., Ramakrishnan, V., Vancheesan, S., and Kuriacose, J. C., 1985, Reactions of the carbonate radical with aliphatic amines,Tetrahedron 41, 3837–3843.

    Google Scholar 

  • Elliot, A. J., McEachern, R. J., and Armstrong, D. A., 1981, Oxidation of amino-containing disulfides by Br 2 · and OH·. A pulse radiolysis study,J. Phys. Chem. 85, 68–75.

    Google Scholar 

  • Eriksson, E., 1952, Composition of atmospheric precipitation. I. Nitrogen compounds,Tellus 4, 215–232.

    Google Scholar 

  • Finlayson-Pitts, B. J. and Pitts, J. N. Jr., 1986,Atmospheric Chemistry, Wiley-Interscience, New York.

    Google Scholar 

  • Fonselius, S., 1954, Amino acids in rainwater,Tellus 6, 90.

    Google Scholar 

  • Foote, C. S., 1976, Photosensitized oxidation and singlet oxygen: consequences in biological systems, in W. A. Pryor (ed.),Free Radicals in Biology, Vol. 2, Academic Press, New York, p. 85.

    Google Scholar 

  • Foote, C. S., 1991, Definition of Type I and Type II photosensitized oxidation,Photochem. Photobiol. 54, 659.

    Google Scholar 

  • Forni, L. G., Morra-Arellano, V. O., Packer, J. E., and Willson, R. L., 1986, Nitrogen dioxide and related free radicals: electron-transfer reactions with organic compounds in solutions containing nitrite or nitrate,J. Chem. Soc., Perkin Trans. 2, 1–7.

    Google Scholar 

  • Fuhrman, J. A. and Bell, T. M., 1985, Biological considerations in the measurement of dissolved free amino acids in seawater and implications for chemical and microbiological studies,Mar. Ecol. Prog. Ser. 25, 13–21.

    Google Scholar 

  • Fulton, J. D. and Mitchell, R. B., 1966, Microorganisms of the upper atmosphere. II. Microorganisms in two types of air masses at 690 meters over a city,Appl. Microbiol. 14, 232–236.

    Google Scholar 

  • Galloway, J. N., Charlson, R. J., Andreae, M. O., and Rohde, H. (eds), 1985,The Biogeochemical Cycling of Sulfur and Nitrogen in the Remote Atmosphere, D. Reidel, Dordrecht.

    Google Scholar 

  • Garrison, W. M., 1987, Reaction mechanisms in the radiolysis of peptides, polypeptides and proteins,Chem. Rev. 87, 381–398.

    Google Scholar 

  • Gelbwachs, J. and Birnbaum, M., 1973, Fluorescence of atmospheric aerosols and lidar implications,Appl. Opt. 12, 2442.

    Google Scholar 

  • Gerhsey, R. M., 1983, Characterization of seawater organic matter carried by bubble generated aerosols,Limnol. Oceanogr. 28, 309–319.

    Google Scholar 

  • Gorzelska, K. and Galloway, J. N., 1990, Amine nitrogen in the atmospheric environment over the North Atlantic Ocean,Global Biogeochem. Cycles 4, 309–333.

    Google Scholar 

  • Gorzelska, K., Galloway, J. N., Watterson, K., and Keene, W. C., 1992, Water soluble primary amine compounds in rural continental precipitation,Atmos. Environ. 26A, 1005–1018.

    Google Scholar 

  • Graedel, T. E. and Goldberg, K. I., 1983, Kinetic studies of raindrop chemistry, 1, Inorganic and organic processes,J. Geophys. Res. 88, 10865–10882.

    Google Scholar 

  • Graedel, T. E. and Weschler, C. J., 1981, Chemistry within aqueous atmospheric aerosols and raindrops,Rev. Geophys. 19, 505–539.

    Google Scholar 

  • Graedel, T. E., Mandich, M. L., and Weschler, C. J., 1986, Kinetic model studies of atmospheric droplet chemistry. 2. Homogeneous transition metal chemistry in raindrops,J. Geophys. Res. 91, 5205–5221.

    Google Scholar 

  • Greenstein, J. P. and Winitz, M., 1961,Chemistry of the Amino Acids, Wiley, New York.

    Google Scholar 

  • Griffing, G. W., 1977, Ozone and oxides of nitrogen production during thunderstorms,J. Geophys. Res. 82, 943–950.

    Google Scholar 

  • Gronberg, L., Lovkvist, P., and Jonsson, J. A., 1992, Measurement of aliphatic amines in ambient air and rainwater,Chemosphere 24, 1533–1540.

    Google Scholar 

  • Grossweiner, L. I., 1984, Photochemistry of proteins: a review, inCurr. Eye Res. 3, 137–144.

    Google Scholar 

  • Grossweiner, L. I. and Smith, K. C., 1989, Photochemistry. Chap. 2 in K. C. Smith (ed.),The Science of Photobiology, 2nd edn., Plenum, New York.

    Google Scholar 

  • Gunz, D. W. and Hoffmann, M. R., 1990, Atmospheric chemistry of peroxides: A review,Atmos. Environ. 24A, 1601–1633.

    Google Scholar 

  • Haag, W. R., Hoigne, J., and Bader, H., 1984, Improved ammonia oxidation by ozone in the presence of bromide ion during water treatment,Water Res. 18, 1125–1128.

    Google Scholar 

  • Hamilton, R. D., 1964, Photochemical processes in the inorganic nitrogen cycle of the sea,Limnol. Oceanogr. 9, 107–111.

    Google Scholar 

  • Hancock, W. S. (ed.), 1984,CRC Handbook of HPLC for the Separation of Amino Acids, Peptides and Proteins, Vols. I and II, CRC Press, Boca Raton, Fl.

    Google Scholar 

  • Harvie, C. E. and Weare, J. H., 1980, The prediction of mineral solubilities in natural waters: The Na-K-Mg-Ca Cl-SO4-H2O system,Geochim. Cosmochim. Acta 44, 981–997.

    Google Scholar 

  • Hasegawa, K. and Neta, P., 1978, Rate constants and mechanisms of reactions of Cl 2 · radicals,J. Phys. Chem. 82, 854–857.

    Google Scholar 

  • Hayon, E. and Simic, M., 1971, Pulse radiolysis study of cyclic peptides in aqueous solution. Absorption spectrum of the peptide radical -NHCHCO-,J. Am. Chem. Soc. 93, 6781–6786.

    Google Scholar 

  • Heikes, B. G., Lazarus, A. L., Kok, G. L., Kunen, S. M., Grandrud, B. W., Gitlin, S. N., and Sperry, P. D., 1982, Evidence for aqueous phase hydrogen peroxide synthesis in the troposphere,J. Geophys. Res. 3045–3051.

  • Hellebust, J. A., 1974, in W. P. D. Stewart (ed.),Algal Physiology and Biochemistry, University of California Press, Berkeley, CA, pp. 838–863.

    Google Scholar 

  • Hill, R. R., Coyle, J. D., Birch, D., Dawe, E., Jeffs, G. E., Randall, D., Stee, I., and Stevenson, T. M., 1991, Photochemistry of dipeptides in aqueous solution,J. Am. Chem. Soc. 11, 1805–1817.

    Google Scholar 

  • Hiller, K.-O., Masloch, B., Gobl, M., and Asmus, K.-D., 1981, Mechanism of the OH· radical induced oxidation of methionine in aqueous solution,J. Am. Chem. Soc. 103, 2734–2743.

    Google Scholar 

  • Hoffman, E. J. and Duce, R., 1977, Organic carbon in marine atmospheric particulate matter: concentration and particle size distribution,Geophys. Res. Lett. 4, 449–452.

    Google Scholar 

  • Hoigne, J. and Bader, H., 1978, Ozonation of water: kinetics of oxidation of ammonia by ozone and hydroxyl radicals,Environ. Sci. Technol. 12, 79–84.

    Google Scholar 

  • Hoigne, J. and Bader, H., 1983, Rate constants of ozone with organic and inorganic compounds in water — II,Water Res. 17, 185–194.

    Google Scholar 

  • Huie, R. E. and Neta, P., 1984, Chemical behavior of SO 3 and SO 5 radicals in aqueous solutions,J. Phys. Chem. 88, 5665–5669.

    Google Scholar 

  • Huie, R. E. and Neta, P., 1985, One-electron redox reactions in aqueous solutions of sulfite with hydroquinone and other hydroxyphenols,J. Phys. Chem. 89, 3918–3921.

    Google Scholar 

  • Hutchinson, G. E., 1957,A Treatise on Limnology, Vol. I, Wiley, New York, p. 551.

    Google Scholar 

  • Iribarne, J. V. and Cho, H. R., 1989, Models of cloud chemistry,Tellus 41B, 2–23.

    Google Scholar 

  • Isied, S. S., Vassilian, A., Magnuson, R. H., and Schwartz, H., 1985, Electron transfer across polypeptides. 5. Rapid rates of electron transfer between Os(II) and Co(III) in complexes with bridging oligoprolines and other polypeptides,J. Am. Chem. Soc. 107, 7432–7438.

    Google Scholar 

  • Jacob, D. J., 1986, Chemistry of OH in remote clouds and its role in the production of formic acid and peroxymonosulfate,J. Geophys. Res. 91, 9807–982.

    Google Scholar 

  • Jayne, J. T., Duan, S. X., Davidovits, P., Worsnop, D. R., Zanhiser, M. S., and Kolb, C. E., 1992, Uptake of gas-phase aldehydes by water surfaces,J. Phys. Chem. 96, 5452–5460.

    Google Scholar 

  • Jones, B. L. and Cookson, J. T., 1983, Natural atmospheric microbial conditions in a typical suburban area,Appl. Environ. Microbiol. 45, 919–934.

    Google Scholar 

  • Joussot-Dubien, J. and Kadiri, A., 1970, Photosensitized oxidation of ammonia by singlet oxygen in aqueous solution and in seawater,Nature 227, 700–701.

    Google Scholar 

  • Junge, C. E., 1954, Recent investigations in air chemistry,Tellus 8, 127–139.

    Google Scholar 

  • Katsuragi, Y., Neda, O., Yamauchi, K., and Masuda, T., 1986, Comparison of reactivities of dibromide anion radical and dichloride anion radical in neutral aqueous solution,Bull. Chem. Soc. Jpn. 59, 3971–3972.

    Google Scholar 

  • Keiber, D. J. and Mopper, K., 1986, Trace determination of α-keto acids in natural waters,Anal. Chimica Acta 183, 129–140.

    Google Scholar 

  • Kley, D., Drummond, J. W., McFarland, M., and Liu, S. C., 1981, Tropospheric profiles of NO x ,J. Geophys. Res. 86, 3153–3161.

    Google Scholar 

  • Kopoldova, J., Liebster, J., and Gross, E., 1967, Radiation chemical reactions in aqueous solutions of methionine and its peptides,Radiat. Res. 130, 261–274.

    Google Scholar 

  • Korman, C., Bahnemann, D. W., and Hoffman, M. J., 1988, Photocatalytic production of H2O2 and organic peroxides in aqueous suspensions of TiO2, ZnO and desert sand,Environ. Sci. Technol. 22, 798–805.

    Google Scholar 

  • Lee, C. and Bada, J. L., 1977, Dissolved amino acids in the equatorial Pacific, the Sargasso Sea and Biscayne Bay,Limnol. Oceanogr. 22, 502–510.

    Google Scholar 

  • Leighton, P. A., 1961,Photochemistry of Air Pollution, Academic Press, New York.

    Google Scholar 

  • Lelieveld, J. and Crutzen, P. J., 1991, The role of clouds in tropospheric chemistry,J. Atmos. Chem. 12, 229–267.

    Google Scholar 

  • Levine, J. S., Rogowski, R. S., Gregory, G. L., Howell, W. E., and Fishman, J., 1981, Simultaneous measurements of NO x , NO and O3 production in a laboratory discharge: atmospheric implications,Geophys. Res. Lett. 8, 357–360.

    Google Scholar 

  • Likens, G. E., Edgerton, E. S., and Galloway, J. N., 1983, The composition and deposition of organic carbon in precipitation,Tellus 35B, 16–24.

    Google Scholar 

  • Lion, Y. F., Kuwabara, M., and Riesz, P., 1980, UV photolysis of aqueous solutions of aliphatic peptides. An ESR and spin trapping study,J. Phys. Chem. 84, 3378–3384.

    Google Scholar 

  • Logan, J. A., Prather, M. J., Wofsy, S. C., and McElroy, M. B., 1981, Tropospheric chemistry, a global perspective,J. Geophys. Res. 86, 7210–7254.

    Google Scholar 

  • McElroy, W. J., 1986, Sources of hydrogen peroxide in cloudwater,Atmospheric Environment 20, 427–438.

    Google Scholar 

  • Mancinelli, R. L. and Shulls, W. S., 1978, Airborne bacteria in an urban environment,Appl. Environ. Microbiol. 35, 1095–1101.

    Google Scholar 

  • Mandrioli, P., Puppi, G. L., Bagni, N., and Prodi, F., 1973, Distribution of microorganisms in hailstones,Nature 246, 416–417.

    Google Scholar 

  • Matheson, I. B. C., Etheridge, R. D., Kratowich, N. R., and Lee, J., 1975, The quenching of singlet oxygen by amino acids and proteins,Photochem. Photobiol. 21, 165–171.

    Google Scholar 

  • Matveev, A. A. and Bashmakova, O. I., 1966, Chemical composition of atmospheric precipitations in some areas of the U.S.S.R,Gidrokhim. Mater 45, 3–16; CA 67, 66657.

    Google Scholar 

  • Millero, F. J. and Schreiber, D. R., 1982, Use of the ion pairing model to estimate activity coefficients of the ionic components of natural waters,Am. J. Sci. 282, 1508–1540.

    Google Scholar 

  • Milne, P. J., 1988, Investigations using time resolved laser spectroscopy in marine photochemistry, PhD thesis, University of Miami, Coral Gables, Fl.

    Google Scholar 

  • Milne, P. J., Saltzman, E. S., and Zika, R. G., 1988, Rate of reaction of methanesulfonic acid, dimethyl sulfoxide and dimethylsulfone with hydroxyl radical in aqueous solution, in E. S. Saltzman and W. G. Cooper (eds.),Biogenic Sulfur in the Environment, ACS Symposium Series 393, ACS, Washington, D.C.

    Google Scholar 

  • Milne, P. J. and Zika, R. G., 1989, Luminescence quenching of dissolved organic matter in seawater,Mar. Chem. 29, 1–17.

    Google Scholar 

  • Monahan, E. C., 1983, The ocean as a source for atmospheric particles, in P. Buat-Menard (ed.),The Role of Air-Sea Exchange in Geochemical Cycling, D. Reidel, Dordrecht.

    Google Scholar 

  • Moffett, J. W. and Zika, R. G., 1987, Reaction kinetics of hydrogen peroxide with copper and iron in seawater,Environ. Sci. Technol. 21, 804–810.

    Google Scholar 

  • Mockel, H., Bonifacic, M., and Asmus, K.-D., 1974, Formation of positive ions in the reaction of disulfides with hydroxyl radicals in aqueous solution,J. Phys. Chem. 78, 282–284.

    Google Scholar 

  • Monig, J., Chapman, R., and Asmus, K.-D., 1985, Effect of the protonatiion state of the amino group on the OH· radical induced decarboxylation of amino acids in aqueous solution,J. Phys. Chem. 89, 3139–3144.

    Google Scholar 

  • Mopper, K. and Lindroth, P., 1982, Diel and depth variations in dissolved free amino acids and ammonium in the Baltic Sea determined by shipboard HPLC analysis,Limnol. Oceanogr. 27, 336–347.

    Google Scholar 

  • Mopper, K. and Zika, R. G., 1987, Free amino acids in marine rains: Evidence for oxidation and potential role for nitrogen cycling,Nature 325, 246–249.

    Google Scholar 

  • Munczak, F., 1960, On the appearance of ninhydrin positive substances in the atmosphere,Tellus 12, 282–292.

    Google Scholar 

  • National Academy of Sciences, 1976,Halocarbons: Effects on Stratospheric Ozone, National Academy Press, Washington D.C.

    Google Scholar 

  • Neda, O., Yamauchi, K., and Masuda, T., 1985, Determination of rate constants for the reactions of dichloride anion radical with some depeptides in aqueous solution of KCl and KS2O8 by flash photolysis,Bull. Chem. Soc. Jpn. 58, 227–229.

    Google Scholar 

  • Neta, P., Maruthamuthu, P., Carton, P. M., and Fessenden, R. W., 1978, Formation and reactivity of the amino radical,J. Phys. Chem. 82, 1875–1878.

    Google Scholar 

  • Neta, P. and Hie, R. E., 1985, One-electron redox reactions involving sulfite ions and aromatic amines,J. Phys. Chem. 89, 1783–1787.

    Google Scholar 

  • Neta, P. and Huie, R. E., (1986), Rate constants for reactions of NO3 radicals in aqueous solutions,J. Phys. Chem. 90, 4644–4648.

    Google Scholar 

  • Neta, P., Huie, R. E., and Ross, A. B., 1988, Rate constants for reactions of inorganic radicals in aqueous solution,J. Phys. Chem. Ref. Data 17, 1027–1284.

    Google Scholar 

  • Nielsen, T., Samuelsson, U., Grennfelt, P., and Thomsen, E. L., 1981, Peroxyacetyl nitrate in long-range transported air,Nature 293, 553–555.

    Google Scholar 

  • Novakov, T., 1972, Chemical composition of Pasadena aerosol by particle size and time of day. III. Chemical states of nitrogen and sulfur by photoelectron spectroscopy,J. Coll. Interfac. Sci. 39, 225–234.

    Google Scholar 

  • Packer, J. E. and Winchester, R. V., 1970, Cobalt-60 radiolysis of oxygenated aqueous solutions of cysteine at pH 7,Can. J. Chem. 48, 417–421.

    Google Scholar 

  • Packer, J. E., 1984, A reinvestigation of the oxidation of cysteine by Br 2 · and O 2 ·,J. Chem. Soc., Perkin Trans. 2, 1015–1023.

    Google Scholar 

  • Parker, B. C., 1968, Rain as a source of vitamin B12,Nature 219, 617–618.

    Google Scholar 

  • Parungo, F. P., Nagamoto, C. T., Rosinski, J., and Haagenson, P. L., 1986, A study of marine aerosols over the Pacific Ocean,J. Atmos. Chem. 4, 199–226.

    Google Scholar 

  • Parungo, F. P. and Pueschel, R., 1980, Conversion of nitrogen oxides to nitrate particles,J. Geophys. Res. 85, 4507–4511.

    Google Scholar 

  • Patrick, R. and Golden, D. M., 1984, Kinetics of the reactions of NH2 radicals with O3 and O2,J. Phys. Chem, 491–495.

  • Penner, J. E., Atherton, C. S., Dignon, J., Ghan, S. J., Walton, J. J., and Hameed, S., 1991, Tropospheric nitrogen: a three-dimensional study of sources, distributions and deposition,J. Geophys. Res. 96, 959–990.

    Google Scholar 

  • Pileni, M.-P. and Santus, R., 1978, On the photosensitizing properties of N-formylkynurenine and related compounds,Photochem. Photobiol. 28, 525–529.

    Google Scholar 

  • Pitts, J. N. Jr., Grosjean, D., Van Cauwenberghe, K., Schmid, J. P., and Fitz, D. R., 1978, Photochemical oxidation of aliphatic amines under simulated atmospheric conditions; formation of nitrosamines, nitramines, amides and photochemical oxidant,Environ. Sci. Technol. 12, 946.

    Google Scholar 

  • Pitzer, K. S. and Mayorga, G., 1973, Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes,J. Am. Chem. Soc. 96, 5701–5707.

    Google Scholar 

  • Platt, U. F., Winer, A. M., Biermann, H. W., Atkinson, R., Pitts, J. N. Jr., 1984, Measurement of nitrate radical concentration in continental air,Environ. Sci. Technol. 18, 365–369.

    Google Scholar 

  • Prospero, J. M., Keene, W. C., Galloway, J. N., Delmas, R. J., Granat, L., Gravenhorst, G., Likens, G. E., 1985, The deposition of sulfur and nitrogen from the remote atmosphere working-group report, in J. N. Galloway, R. J. Charlson, M. O. Andreae, and H. Rohde (eds),The Biogeochemical Cycling of Sulfur and Nitrogen in the Remote Atmosphere, D. Reidel, Dordrecht.

    Google Scholar 

  • Prutz, W. A., Land, E. J., and Sloper, R. W., 1981, Charge transfer in peptides,J. Chem. Soc., Faraday Trans. 1 77, 281–292.

    Google Scholar 

  • Pryor, W. A., Gleicher, G. J., and Church, D. F., 1983, Reactions of polycyclic aromatic hydrocarbons with ozone. Linear free energy relationships and tests of likely rate determining steps using simple molecular orbital correlations,J. Org. Chem. 48, 4198–4202.

    Google Scholar 

  • Pryor, W. A., Giamalva, D. H., and Church, D. F., 1984, Kinetics of ozonation. 2. Amino acids and model compounds in water and comparison to rates in non-polar solvents,J. Am. Chem. Soc. 106, 7094–7100.

    Google Scholar 

  • Purdie, J. W., 1967, Radiolysis of cystine in aqueous solution. Dose-rate effects and a proposed mechanism,J. Am. Chem. Soc. 89, 226–230.

    Google Scholar 

  • Quinn, P. K., Charlson, R. J., and Zoller, W. H., 1987, Ammonia, the dominant base in the remote marine troposphere: a review,Tellus 39B, 413–425.

    Google Scholar 

  • Radojevic, M., 1986, Nitrite in rainwater,Atmos. Environ. 20, 1309–1310.

    Google Scholar 

  • Redpath, J. L. and Wilson, R. L., 1975, Chain reactions and radiosensitization: Model enzyme studies,Int. J. Radiat. Biol. 27, 389–398.

    Google Scholar 

  • Roberts, J. M., 1990, The atmospheric chemistry of organic nitrates,Atmos. Environ. 24A, 243–287.

    Google Scholar 

  • Rosenthal, I., Mossoba, M. M., and Riesz, P., 1981, Dibenzoyl peroxide induced decarboxylation of amino acids and peptides. A spin trapping study,J. Phys. Chem. 85, 2398–2403.

    Google Scholar 

  • Ross, A. B. and Neta, P., 1979, Rate constants for reactions of inorganic radicals in aqueous solution. NSRDS-NBS 65, U.S. Government Printing Office, Washington, DC.

    Google Scholar 

  • Rowland, F. S. and Molina, M. J., 1975, Chlorofluoromethanes in the environment,Rev. Geophys. Space Phys. 13, 1–35.

    Google Scholar 

  • Saltzman, E., Gidel, L. T., Zika, R. G., Milne, P. J., Prospero, J. M., Savoie, D. L., and Cooper, W. B., 1984, Atmospheric chemistry of methanesulfonic acid,JAPCA TR-2, 251–262.

    Google Scholar 

  • Savoie, D. L. and Prospero, J. M., 1982, Particle size distribution of nitrate and sulfate in the marine atmosphere,Geophys. Res. Lett. 9, 1207–1210.

    Google Scholar 

  • Savoie, D. L., Prospero, J. M., Merrill, J. T., and Uematsu, M., 1989, Nitrate in the atmospheric boundary layer of the tropical South Pacific: implications regarding sources and transport,J. Atmos. Chem. 8, 391–415.

    Google Scholar 

  • Sealy, R. C., Harman, L., West, P. R., and Mason, R. P., 1985, The electron spin resonance spectrum of the tyrosyl radical,J. Am. Chem. Soc. 107, 3401–3406.

    Google Scholar 

  • Sehested, K., Corfitzen, H., Holcman, J., Fischer, C. H., and Hart, E. J., 1991, The primary reaction in the decomposition of ozone in acidic aqueous solution,Environ. Sci. Technol. 25, 1589–1596.

    Google Scholar 

  • Seidl, W., 1989, Ionic concentrations and initial S(IV) oxidation rates in droplets during the condensation stage of cloud,Tellus 41B, 32–50.

    Google Scholar 

  • Semenov, A. D., Nemtsefva, L. I., Kishkinova, T. S., and Pashanova, A. P., 1967, Organic substances of atmospheric precipitations,Dokl. Akad. Nauk. SSSR 173, 1185–1187; CA 67, 34941.

    Google Scholar 

  • Seymour, M. D. and Scout, T., 1983, Observations of the chemical composition of rain using short sampling times during a single event,Atmos. Environ. 17, 1483–1483.

    Google Scholar 

  • Schanze, K. S. and Sauer, K., 1988, Photoinduced intramolecular electron transfer in peptide-bridged molecules,J. Am. Chem. Soc. 110, 11802–1186.

    Google Scholar 

  • Schnell, R. C. and Vali, G., 1972, Atmospheric ice-nuclei from decomposing vegetation,Nature 236, 163–165.

    Google Scholar 

  • Schnell, R. C. and Vali, G., 1976, Biogenic ice nuclei. Part I: Terrestrial and marine sources,J. Atmos. Sci. 33, 1554–1564.

    Google Scholar 

  • Schryer, D. R. (ed.), 1982,Heterogenous Atmospheric Chemistry, AGU, Washington D.C.

    Google Scholar 

  • Schwartz, S. E., 1984, Gas and aqueous phase chemistry of HO2 in liquid water clouds,J. Geophys. Res. 89, 11589–11598.

    Google Scholar 

  • Scully, F. E. Jr. and Hoigne, J., 1987, Rate constants of singlet oxygen with phenols and other compounds in water,Chemosphere 16, 681–694.

    Google Scholar 

  • Sidle, A. B., 1967, Amino acid content of atmospheric precipitation,Tellus 19, 128–135.

    Google Scholar 

  • Singh, H. B., 1987, Reactive nitrogen in the troposphere,Environ. Sci. Technol. 21, 320–327.

    Google Scholar 

  • Singer, P. C. and Zilli, W. B., 1975, Ozonation of ammonia in wastewater,Water Res. 9, 127–134.

    Google Scholar 

  • Spitzy, A., 1990, Amino acids in marine aerosols and rain, in V. Ittekot and S. Kempe (eds),Facets of Modern Biogeochemistry, Springer-Verlag, Berlin.

    Google Scholar 

  • Straight, R. C. and Spikes, J. D., 1985, Photosensitized oxidations of biomolecules, Chapter 2 in A. A. Frimer (ed.)Singlet O 2, Vol. IV, Polymers and Biomolecules, CRC Press, Boca Raton, Fl.

    Google Scholar 

  • Stelson, A. W. and Seinfeld, J. H., 1982, Relative humidity and temperature dependence of the ammonium nitrate dissociation constant,Atmos. Environ. 16, 983–992.

    Google Scholar 

  • Suzuki, J., Ueki, T., Shimizu, S., Uesugi, K., and Suzuki, S., 1985, Formation of mutagens by photolysis of amino acids in neutral aqueous solution containing nitrite of nitrate ion,Chemosphere 14, 493–500.

    Google Scholar 

  • Swallow, A. J., 1969, Hydrated electrons in seawater,Nature 222, 369–370.

    Google Scholar 

  • Sysak, P. K., Foote, C. S., and Ching, T.-Y., 1977, Chemistry of singlet oxygen XXV. Photooxygenation of methionine,Photochem. Photobiol. 26, 19–27.

    Google Scholar 

  • Taniguchi, H., 1984, An electron spin resonance study of organosulfur radicals produced in electron irradiated aqueous solutions. Spin trapping with nitromethane aci-anion and 2-methyl-2-nitrosopropane,J. Phys. Chem. 88, 6245–6250.

    Google Scholar 

  • Timperly, M. H., Vigor-Brown, R. J., Kawashima, M., and Ishigami, M., 1985, Organic nitrogen compounds in atmospheric precipitation: their chemistry and availability to phytoplankton,Can. J. Fish. Aquat. Sci. 42, 1171–1177.

    Google Scholar 

  • Tuazon, E. C., Winer, A. M., Graham, R. A., Schmid, J. P., and Pitts, J. N. Jr., 1978, Fourier transform infrared detection of nitramines in irradiated amine-NO x systems,Environ. Sci. Technol. 12, 954.

    Google Scholar 

  • Tuazon, E. C., Carter, W. P. L., Atkinson, R., Winer, A. M., and Pitts, J. N. Jr., 1984, Atmospheric reactions of N-nitrosodimethylamine and dimethylnitramine,Environ. Sci. Technol. 18, 49.

    Google Scholar 

  • Twohy, C. H., Austin, P. H., and Charlson, R. J., 1989, Chemical consequences of the initial diffusional growth of cloud droplets: a clean marine case,Tellus 41B, 51–60.

    Google Scholar 

  • Tyndall, G. S. and Ravishankara, A. R., 1991, Atmospheric oxidation of reduced sulfur species,Int. J. Chem. Kinet. 23, 483–527.

    Google Scholar 

  • Utter, R. G., Burkholder, J. B., Howard, C. J., and Ravishankara, A. R., 1992, Measurement of the mass accommodation coefficient of ozone on aqueous surfaces,J. Phys. Chem. 96, 4973–4979.

    Google Scholar 

  • Van Neste, A., Duce, R. A., and Lee, C., 1987, Methylamines in the marine atmosphere,Geophys. Res. Lett. 14, 711–714.

    Google Scholar 

  • Visser, S. A., 1964, Origin of nitrates in tropical rainwater,Nature 201, 35–36.

    Google Scholar 

  • Volesky, B., Zajic, J. E., and Knettig, E., 1970, in J. E. Zajic (ed.),Properties and Products of Algae, Plenym, New York, pp. 49–82.

    Google Scholar 

  • von Sonntag, C. and Schuchman, H.-P., 1991, The elucidation of peroxy radical reactions in aqueous solution with the help of radiation chemical methods,Angew. Chem. Int. Ed. Engl. 30, 1229–1253.

    Google Scholar 

  • Warneck, P., 1988,Chemistry of the Natural Atmosphere, Academic Press, San Diego, Ca.

    Google Scholar 

  • Wallace, J. M. and Hobbs, P. V., 1977,Atmospheric Science: An Introductory Survey, Academic Press, New York, pp. 158–164.

    Google Scholar 

  • Walrant, P. and Santus, R., 1974, N-formyl-kynurenine, a tryptophan photooxidation product, as a photodynamic sensitizer,Photochem. Photobiol. 19, 411–417.

    Google Scholar 

  • Wayne, R. P., Barnes, I., Biggs, P., Burrows, J. P., Canosa-Mas, C. E., Hjorth, J., Le Bras, G., Moortgat, G. K., Perner, D., Poulet, G., Restelli, G., and Sidebottom, H., 1991, The nitrate radical: Physics, chemistry and the atmosphere,Atmos. Environ. 25A, 1–204.

    Google Scholar 

  • Weschler, C. J., Mandich, M. L., and Graedel, T. E., 1986, Speciation, photosensitivity, and reactions of transition metal ions in atmospheric droplets,J. Geophys. Res. 91, 5189–5204.

    Google Scholar 

  • Williams, P. M. and Druffel, E. R. M., 1988, Dissolved organic matter in the oceans: Comments on a controversy,Oceanography 1, 14–17.

    Google Scholar 

  • Wilson, A. T., 1959, Organic nitrogen in New Zealand snows,Nature 183, 318–319.

    Google Scholar 

  • Wine, P. H., Tang, Y., Thorn, R. P., Wells, J. R., and Davis, D. D., 1989, Kinetics of aqueous phase reactions of the SO 4 radical with potential importance in cloud chemistry,J. Geophys. Res. 94, 1085–1094.

    Google Scholar 

  • Winer, A. M., Atkinson, R., and Pitts, J. N. Jr., 1984, Gaseous nitrate radical: possible nighttime atmospheric sink for biogenic compounds,Science 224, 156.

    Google Scholar 

  • Yin, F., Grosjean, D., and Seinfeld, J. H., 1990, Photooxidation of dimethyl sulfide and dimethyl disulfide I: Mechanism development,J. Atmos. Chem. 11, 309–364.

    Google Scholar 

  • Yoshinari, T., 1976, Nitrous oxide in the sea,Mar. Chem. 4, 189–202.

    Google Scholar 

  • Zafiriou, O. C. and McFarland, M., 1981, Nitric oxide from nitrite photolysis in the central equatorial Pacific,J. Geophys. Res. 86, 3173–3182.

    Google Scholar 

  • Zafiriou, O. C. and True, M. B., 1979, Nitrite photolysis in seawater,Mar. Chem. 8, 9–32.

    Google Scholar 

  • Zafiriou, O. C. and True, M. B., 1979, Nitrate photolysis in seawater,Mar. Chem. 8, 33–42.

    Google Scholar 

  • Zafiriou, O. C., MacFarland, M., and Bromund, R. H., 1980, Nitric oxide in seawater,Science 207, 637–639.

    Google Scholar 

  • Zepp, R. G., Braun, A. M., Hoigne, J., and Leenheer, J. A., 1987a, Photoproduction of hydrated electrons from natural solutes in aquatic environments,Environ. Sci. Technol. 21, 485–490.

    Google Scholar 

  • Zepp, R. G., Hoigne, J., and Bader, H., 1987b, Nitrate induced photooxidation of trace organic chemicals in water,Environ. Sci. Technol. 21, 443–450.

    Google Scholar 

  • Zika, R. G., 1987, Advances in marine photochemistry,Rev. Geophys. 25, 1390–1394.

    Google Scholar 

  • Zika, R. and Saltzman, E. S., 1982, Interaction of ozone and hydrogen peroxide in water: Implication for analysis of H2O2 in air,Geophys. Res. Lett. 9, 231–234.

    Google Scholar 

  • Zika, R., Saltzman, E., Chameides, W. L., and Davis, D. D., 1982, H2O2 levels in rainwater collected in South Florida and the Bahama Islands,J. Geophys. Res. 87, 5015–5017.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milne, P.J., Zika, R.G. Amino acid nitrogen in atmospheric aerosols: Occurrence, sources and photochemical modification. J Atmos Chem 16, 361–398 (1993). https://doi.org/10.1007/BF01032631

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01032631

Key words

Navigation