Skip to main content
Log in

A comparison of transplantable bicoid activity and partial bicoid homeobox sequences in several Drosophila and blowfly species (Calliphoridae)

  • Published:
Roux's archives of developmental biology Aims and scope Submit manuscript

Abstract

In order to test for bicoid-like activity in insects other than Drosophila melanogaster, anterior egg cytoplasm from the following species was injected into cleavage stage embryos from mutant D. melanogaster lacking a functional bicoid (bcd) product: six other Drosophila species, the housefly, three blowfly species, the primitive cyclorrhaphic dipteran Megaselia, and the honeybee Apis mellifera; preliminary tests were made with four lower dipterans (Nematocera). Rescue effects were only observed with the drosophilids, housefly, and two of the three blowfly species. Rescue was stronger with the drosophilids than with the other flies as donors. Where checked (D. pseudoobscura), a positive correlation was found between the amount of cytoplasm injected and the number of pattern elements formed, suggesting threshold effects upon target genes as with the endogenous bcd product. By polymerase chain reaction, fragments from a bcd-orthologous homeobox were cloned from the three blowfly species. The derived sequence of 43 amino acids was identical in all blowflies and the housefly but differed at 4 positions from the orthologous D. melanogaster sequence. Localization of the mRNA recognized by the respective fragments in the blowflies Lucilia and Phormia resembled that known from D. melanogaster, while Calliphora — the blowfly species lacking rescue activity —showed remarkable differences of localization in both ovarian follicles and the deposited egg cell. This surprising divergence within a morphologically rather uniform family of cyclorrhaphic dipterans should be of interest from both functional and evolutionary points of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Becker T, Technau GM (1990) Single cell transplantation reveals interspecific cell communication in Drosophila chimeras. Development 109:821–832

    Google Scholar 

  • Berleth T, Burri M, Thoma G, Bopp D, Richstein S, Frigerio G, Noll M, Nüsslein-Volhard C (1988) The role of localization of bicoid RNA in the anterior pattern of the Drosophila embryo. EMBO J 7:1749–1756

    Google Scholar 

  • Beverley SM, Wilson AC (1984) Molecular evolution in Drosophila and the Higher Diptera. II. A time scale for fly evolution. J Mol Evol 21:1–13

    Google Scholar 

  • Bohrmann J, Kiefer G, Sander K (1986) Inverse correlation between mean nuclear DNA content and cell number in nurse cell clusters of Drosophila. Chromosoma 94:36–44

    Google Scholar 

  • Cohen S, Jürgens G (1991) Drosophila headlines. Trends Genet 7:267–272

    Google Scholar 

  • Driever W, Nüsslein-Volhard C (1988) A gradient of bicoid protein in Drosophila embryos. Cell 54:83–93

    Google Scholar 

  • Driever W, Thoma G, Nüsslein-Volhard C (1989) Determination of spatial domains of zygotic gene expression in the Drosophila embryo by the affinity of binding sites for the bicoid morphogen. Nature 340:363–367

    Google Scholar 

  • Driever W, Siegel V, Nüsslein-Volhard C (1990) Autonomous determination of anterior structures in the early Drosophila embryo by the bicoid morphogen. Development 109:811–820

    Google Scholar 

  • Fitch WM (1970) Distinguishing homologous from analogous proteins. Syst Zool 19:99–113

    Google Scholar 

  • Fleig R, Sander K (1986) Embryogenesis of the honeybee Apis mellifera L. (Hymenoptera, Apidae): an SEM study. Int J Insect Morphol Embryol 15:449–462

    Google Scholar 

  • Frigerio G, Burri M, Bopp D, Baumgartner S, Noll M (1986) Structure of the segmentation gene paired and the Drosophila PRD gene set as part of a gene network. Cell 47:735–746

    Google Scholar 

  • Frohnhöfer HG, Nüsslein-Volhard C (1986) Organisation of anterior pattern in the Drosophila embryo by the maternal gene bicoid. Nature 324:120–125

    Google Scholar 

  • Frohnhöfer HG, Lehmann R, Nüsslein-Volhard C (1986) Manipulating the anteroposterior pattern of the Drosophila embryo. J Embryol Exp Morphol (Suppl) 97:169–179

    Google Scholar 

  • Hanes SD, Brent R (1989) DNA specificity of the bicoid activator protein is determined by homeodomain recognition helix residue 9. Cell 57:1275–1283

    Google Scholar 

  • Hülskamp M, Tautz D (1991) Gap genes and gradients — the logic behind the gaps. BioEssays 13:261–268

    Google Scholar 

  • Lemeunier F, David JR, Tsacas L, Ashburner M (1986) The melanogaster species group. In: Ashburner M, Carson HL, Thompson JN (eds) The genetics and biology of Drosophila, vol 3c. Academic Press, New York, pp 148–256

    Google Scholar 

  • Lindsley DL, Zimm GG (1992) The genome of Drosophila melanogaster. Academic Press, New York

    Google Scholar 

  • McDonald PM, Struhl G (1986) A molecular gradient in early Drosophila embryos and its role in specifying the body pattern. Nature 324:437–445

    Google Scholar 

  • Mitchison TJ, Sedat J (1983) Localization of antigenic determinants on whole Drosophila embryos. Dev Biol 99:261–264

    Google Scholar 

  • Mohler J (1993) Genetic regulation of CNC expression in the pharyngeal primordia of Drosophila blastoderm embryos. Roux's Arch Dev Biol 202:214–223

    Google Scholar 

  • Patel NH, Goodman CS (1992) DIG-labeled single-stranded DNA probes for in situ hybridisation. In: Kessler C (ed) Nonradioactive labeling and detection of biomolecules. Springer, Berlin Heidelberg New York, pp 377–381

    Google Scholar 

  • Reuter D, Schuh R, Jäckle H (1989) The hometic gene spalt (sal) evolved during Drosophila speciation. Proc Natl Acad Sci USA 86:5483–5486

    Google Scholar 

  • Sachs L (1978) Statistische Auswertungsmethoden, 5th edn. Springer Berlin Heidelberg New York

    Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel D, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Ehrlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Sander K, Lehmann R (1988) Drosophila nurse cells produce a posterior signal required for embryonic segmentation and polarity. Nature 335:68–70

    Google Scholar 

  • Santamaria P, Nüsslein-Volhard C (1983) Partial rescue of dorsal, a maternal effect mutation affecting the dorso-ventral pattern of the Drosophila embryo, by the injection of wild-type cytoplasm. EMBO J 2:1695–1699

    Google Scholar 

  • Schröder R (1992) Mechanismen der frühembryonalen Musterbildung bei verschiedenen Insektenarten. PhD thesis, Albert-Ludwigs-Universität Freiburg

  • Seeger MA, Kaufman TC (1990) Molecular analysis of the bicoid gene from rosophila pseudoobscura: identification of conserved domains within coding and noncoding regions of the bicoid mRNA. EMBO J 9:2977–2987

    Google Scholar 

  • Sommer R (1992) Vergleichende Analyse von Segmentierungsgenen bei Insekten. PhD thesis, Ludwig-Maximilians-Universität München

  • Sommer R, Tautz D (1991) Segmentation gene expression in the housefly Musca domestica. Development 113:419–430

    Google Scholar 

  • Sommer R, Retzlaff M, Görlich K, Sander K, Tautz D (1992) Evolutionary conservation of zinc-finger domains of Drosophila segmentation genes. Proc Natl Acad Sci USA 89:10782–10786

    Google Scholar 

  • StJohnston D, Nüsslein-Volhard C (1992) The origin of pattern and polarity in the Drosophila embryo. Cell 68:201–219

    Google Scholar 

  • StJohnston D, Driever W, Berleth T, Richstein S, Nüsslein-Volhard C (1989) Multiple steps in the localization of bicoid RNA to the anterior pole of the Drosophila oocyte. Development (Suppl) 107:13–19

    Google Scholar 

  • Struhl G, Struhl K, Macdonald PM (1989) The gradient morphogen bicoid is a concentration-dependent transcriptional activator. Cell 57:1259–1273

    Google Scholar 

  • Tautz D, (1988) Regulation of the Drosophila segmentation gene hunchback by two maternal morphogenetic centres. Nature 332:281–284

    Google Scholar 

  • Tautz D, Pfeifle C (1989) A non-radioactive in situ hybridisation method for the localisation of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma 98:81–85

    Google Scholar 

  • Tautz D, Hülskamp M, Sommer RJ (1992) Whole mount in situ hybridisation in Drosophila. In: Wilkinson DG In situ hybridisation; a practical approach. IRL Press, Oxford, pp 61–73

    Google Scholar 

  • Tearle R, Nüsslein-Volhard C (1987) Tübingen mutant stock list. Drosophila Inf Serv 66:209–269

    Google Scholar 

  • Throckmorton LH (1975) The phylogeny, ecology and geography of Drosophila. In: King RC (ed) Handbook of genetics, vol 3. Plenum Press, New York, pp 421–469

    Google Scholar 

  • Treier M, Pfeifle C, Tautz D (1989) Comparison of the gap segmentation gene hunchback between Drosophila melanogaster and Drosophila virilis reveals novel modes of evolutionary change. EMBO 8:1517–1525

    Google Scholar 

  • Wieschaus E, Nüsslein-Volhard C (1986) Looking at embryos. In: Roberts DB (ed) Drosophila — a practical approach. IRL Press, Oxford, pp 199–227

    Google Scholar 

  • Wyniger R (1974) Insektenzucht. Eugen Ulmer, Stuttgart

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schröder, R., Sander, K. A comparison of transplantable bicoid activity and partial bicoid homeobox sequences in several Drosophila and blowfly species (Calliphoridae). Roux's Arch Dev Biol 203, 34–43 (1993). https://doi.org/10.1007/BF00539888

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00539888

Key words

Navigation