Skip to main content

Using the CRISPR/Cas9 System for Dissection of Functional Sites of the Notch Gene in Drosophila melanogaster

  • Protocol
  • First Online:
Notch Signaling Research

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2472))

Abstract

The Notch gene is a key factor in the signaling cascade that allows communication between neighboring cells in many organisms, from worms and insects to humans. The relative simplicity of the Notch pathway in Drosophila, combined with a powerful set of molecular and cytogenetic methods, makes this model attractive for studying the fundamental principles of Notch regulation and functioning. Here, using the CRISPR/Cas9 system in combination with homologous recombination, for the first time at the level of the whole organism, we obtained a directed deletion of the 5′-regulatory region and the first exon of the Notch gene, which were replaced by the attP integration site of the ΦC31 phage. Based on this approach, we obtained and characterized new Notch mutations. Thus, a new powerful tool is provided for studying the genetic regulation of the Notch gene and the organization of chromatin at this locus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ramos RG, Grimwade BG, Wharton KA, Scottgale TN, Artavanis-Tsakonas S (1989) Physical and functional definition of the Drosophila Notch locus by P element transformation. Genetics 123:337–348

    Article  CAS  Google Scholar 

  2. Markopoulou K, Welshons WJ, Artavanis-Tsakonas S (1989) Phenotypic and molecular analysis of the facets, a group of intronic mutations at the Notch locus of Drosophila melanogaster which affect postembryonic development. Genetics 122:417–428

    Article  CAS  Google Scholar 

  3. Arzate-Mejía RG, Cerecedo-Castillo AJ, Guerrero G, Furlan-Magaril M, Recillas-Targa F (2020) In situ dissection of domain boundaries affect genome topology and gene transcription in Drosophila. Nat Commun 11:894

    Article  CAS  Google Scholar 

  4. Rykowski MC, Parmelee SJ, Agard DA, Sedat JW (1988) Precise determination of the molecular limits of a polytene chromosome band: regulatory sequences for the Notch gene are in the interband. Cell 54:461–472

    Article  CAS  Google Scholar 

  5. Vazquez J, Schedl P (2000) Deletion of an insulator element by the mutation facet-strawberry in Drosophila melanogaster. Genetics 155:1297–1311

    Article  CAS  Google Scholar 

  6. Hou C, Li L, Qin ZS, Corces VG (2012) Gene density, transcription, and insulators contribute to the partition of the Drosophila genome into physical domains. Mol Cell 48:471–484

    Article  CAS  Google Scholar 

  7. Sexton T, Yaffe E, Kenigsberg E, Bantignies F, Leblanc B, Hoichman M, Parrinello H, Tanay A, Cavalli G (2012) Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148:458–472

    Article  CAS  Google Scholar 

  8. Stadler MR, Haines JE, Eisen MB (2017) Convergence of topological domain boundaries, insulators, and polytene interbands revealed by high-resolution mapping of chromatin contacts in the early Drosophila melanogaster embryo. eLife 6:e29550

    Article  Google Scholar 

  9. Gratz SJ, Cummings AM, Nguyen JN, Hamm DC, Donohue LK, Harrison MM, Wildonger J, O’Connor-Giles KM (2013) Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics 194:1029–1035

    Article  CAS  Google Scholar 

  10. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278

    Article  CAS  Google Scholar 

  11. Gratz SJ, Ukken FP, Rubinstein CD, Thiede G, Donohue LK, Cummings AM, O’Connor-Giles KM (2014) Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in Drosophila. Genetics 196:961–971

    Article  CAS  Google Scholar 

  12. Huang J, Zhou W, Watson AM, Jan YN, Hong Y (2008) Efficient ends-out gene targeting in Drosophila. Genetics 180:703–707

    Article  Google Scholar 

  13. Laktionov PP, White-Cooper H, Maksimov DA, Belyakin SN (2014) Transcription factor COMR acts as a direct activator in the genetic program controlling spermatogenesis in D. melanogaster. Mol Biol 48:153–165

    Article  CAS  Google Scholar 

  14. Dower WJ, Miller JF, Ragsdale CW (1988) High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 16:6127–6145

    Article  CAS  Google Scholar 

  15. Rubin GM, Spradling AC (1982) Genetic transformation of Drosophila with transposable element vectors. Science 218:348–353

    Article  CAS  Google Scholar 

  16. Shilova IE, Omel’yanchuk LV (2007) A method for transformation of Drosophila germline cells with a high-concentration exogenous DNA. Russ J Genet 43:80–83

    Article  CAS  Google Scholar 

  17. Gompel N, Shröder EA (2015) Drosophila germline transformation protocol (www.gompel.org/methods)

    Google Scholar 

  18. Miller DFB, Holtzman SL, Kaufman TC (2002) Customized microinjection glass capillary needles for P-element transformations in Drosophila melanogaster. Biotechniques 33:366–375

    Article  CAS  Google Scholar 

  19. Campos-Ortega JA, Hartenstein V (1997) The embryonic development of Drosophila melanogaster. Springer, Berlin, p 405

    Book  Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Science Foundation project #20-14-00074. The authors gratefully acknowledge the resources provided by the “Molecular and Cellular Biology” core facility of the IMCB SB RAS supported by the fundamental scientific research program on the project FWGZ-2021-0014. We thank D.S. Sidorenko at IMCB SB RAS for helpful discussion of this work. We thank the Bloomington Drosophila Stock Center for their kind provision of the fly stocks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey A. Demakov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Andreyenkov, O.V., Volkova, E.I., Andreyenkova, N.G., Demakov, S.A. (2022). Using the CRISPR/Cas9 System for Dissection of Functional Sites of the Notch Gene in Drosophila melanogaster. In: Jia, D. (eds) Notch Signaling Research. Methods in Molecular Biology, vol 2472. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2201-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2201-8_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2200-1

  • Online ISBN: 978-1-0716-2201-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics