Skip to main content
Log in

Oxygenation of cell cultures

  • Originals
  • Published:
Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Submersed cultures are increasingly being used for fermentation with animal cells. Reactor design is particularly important in these operations, because of the sensitivity of the cells to shear. In addition to the usual aeration methods, open-pore membranes or pure diffusion membranes are used for oxygenation in order to avoid gas bubbles. The various oxygenation methods are described in the present article [1]. Design principles for surface aeration, bubble columns, loop reactors, and stirred tanks, as well as oxygenation with Accurel or silicone membranes, are presented and discussed specifically for the low oxygen inputs desired in cell cultures. The scale laws are formulated, and special reference is made to problems of scale up. The various oxygenation methods are finally compared on the basis of the design principles presented, with particular attention to mechanical stress on the cells and to the laws of scale translation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

Interfacial area

a :

=A/V, Specific interfacial area

c * :

Saturation concentration

c :

Gas concentration in the liquid phase

d :

Impeller diameter

d 2 :

Outside diameter of tubular membrane

d 1 :

Inside diameter of tubular membrane

d′:

Diameter under stretched conditions

d p :

Particle diameter

d L :

Diameter of sparger holes

D :

Reactor diameter

D L :

Draught tube diameter

\(\mathbb{D}\) :

Gas/liquid diffusion coefficient

e :

Eccentricity

Fr :

Froude number

G :

Mass flow

g :

Acceleration due to gravity

h :

Height of impeller blade

H :

Filling height

Hy :

Henry constant for the liquid phase

Hy s :

Henry constant of the membrane material

k :

Overall mass transfer coefficient

k L :

Gas-liquid interface mass transfer coefficient

L :

Length of the tubular membrane

L′:

Length of the streched turbulare membrane

n :

Impeller speed

Ne :

P/ϱ n3d5, Newton number

\(\mathcal{P}{\text{o}}_{\text{2}} \) :

O2-partial pressure in the membrane

\({\text{(}}\mathcal{P}{\text{o}}_{\text{2}} )_R \) :

O2-partial pressure in the reactor

P :

Impeller power

q :

Gas throughput

r :

Cell specific respiration rate

Re :

Reynolds number

Sc :

\(v/\mathbb{D}\), Schmidt number

Sh :

\(/\mathbb{D}\), Sherwood number

u :

Liquid velocity

\(\sqrt {u'^2 } \) :

Root mean square velocity of turbulent fluctuations Superficial gas velocity

V :

Filled reactor volume

V s :

Sparged volume

X :

Cell concentration

ɛ :

Energy dissipation

η :

Dynamic viscosity

ϑ :

Temperature

ν :

Kinematic viscosity

ϱ :

Density of the liquid

σ :

Surface tension

τ :

Shear stress

References

  1. Henzler, H.-J.; Kauling, J: Sauerstoffversorgung von Zellkulturen. Lecture presented at Fachausschußsitzung. Bioverfahrenstechnik der GVC in Würzburg Mai 1990 and Preprints of 2. Taunustagung in Bad Soden Febr. 1991

  2. Thilly, W. G.: Mammalian Cell Technology. Butterworths 1986

  3. Bailey, J. E.; Ollis, D. F.: Biochemical Engineering Fundamentals. McGraw-Hill Book Company 1987

  4. Brunner, H.; Comer, M. J.; Kearns, M. J.: Preprints of 2. BMFT Statusseminar “Produktion natürlicher Substanzen aus tierischen Zellen” 1985 Herausgeber Bundesministerium für Forschung und Technologie in Bonn

  5. Miller, W. M.; Wilke, C. R.; Blanch, H. W.: Journal of Cellular Physiologie. 132 (1987) 524–530

    Google Scholar 

  6. Bödeker, B.; u.a.: see 4.

  7. Fiedl, P.; u.a.: Different oxygen sensitivities of vascular endothelical cells in an stirred bioreactor. Bericht der GBF Braunschweig

  8. Hülscher, M.; Pauli, J.; Onken, U.: Biotechnology Letters. 10 (1988) 689–694

    Google Scholar 

  9. Lehmann J.; Piehl, W.; Schulz, R.: Biotech-Forum 2 (1985) 112–117

    Google Scholar 

  10. Bräutigam, H.-J.; Sekoulov, I.: Forum Mikrobiologie 9 (1986) 269–272

    Google Scholar 

  11. Bräutigam, H.: Preprints der 2. Taunustagung Membrantechnologie. Bad Soden 26 27.2.1991

  12. Bräutigam, H.-J.: “Untersuchungen zum Einsatz von nichtporösen Kunststoff membranen als Sauerstoffeintragssystem” Dissertation TH Hamburg-Harburg 1985

  13. Zlokarnik, M.: Korrespondenz Abwasser 27 (1980) 14–21

    Google Scholar 

  14. Vorlop, J.; Lehmann, J.: Chem. Eng. Technol. 11 (1988) 171–178

    Google Scholar 

  15. Brauer, H.; Mewes, D.: Stoffaustausch einschließlich chemischer Reaktion" in Grundlagen der Chemischen Verfahrenstechnik. Verlag Sauerländer, Aarau und Frankfurt am Main 1971

  16. Perkins, H. C.; Leppert, G.: Trans. ASME C.J. Heat Transfer. 84 (1962) 257–63

    Google Scholar 

  17. Henzler, H.-J.: Chem.-Ing.-Tech. 52 (1980) 643–652

    Google Scholar 

  18. Zlokarnik, M.: Acta Biotechnologica 1 (1981) 311–325

    Google Scholar 

  19. Henzler, H.-J.: Chem.-Ing.-Tech. 45 (1982) 461–476

    Google Scholar 

  20. Henzler, H.-J.: VDI-Forschungsheft 587. 1978. VDI-Verlag

  21. Calderbank, P. H., Moo-Young, M. B.: Chem. Engng. Sci. 16 (1961) 39–54

    Google Scholar 

  22. Hinze, J. O.: Turbulence. Mc Graw-Hill, New York 1975

    Google Scholar 

  23. Liepe, F.: “Stoffvereinigen in fluiden Phasen” in Verfahrenstechnishen Berechnungsunterlagen VCH Verlagsgesellschaft 1988

  24. Möckel, H.-O.: Hydrodynamische Untersuchungen in Rührmaschinen. Dissertation Ingenieurhochschule Köthen 1978

  25. Laufhütte, H.-D.: Turbulenzparameter in gerührten Fluiden. Dissertation TU München 1986

  26. Geißler, R. K.: Fluiddynamik und Leistungseintrag in turbulent gerührten Suspensionen. Dissertation TU München 1991

  27. Handa, A.: Ph.D. Thesis, University of Birmingham. 1986

  28. Tramper, J., Vlak, J. M.: Preprints der GVC-Vortragstagung in Tübingen 1987, 189–201

  29. Hülscher, M.: Fortschritt-Bericht Verfahrenstechnik. Reihe 3 (1990) 229 VDI-Verlag

    Google Scholar 

  30. Riquarts, H. P.: Chem.-Ing. Tech. 54 (1982) MS1023/82

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henzler, HJ., Kauling, D.J. Oxygenation of cell cultures. Bioprocess Eng. 9, 61–75 (1993). https://doi.org/10.1007/BF00369033

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00369033

Keywords

Navigation