Skip to main content
Log in

Some Numerical Cases of Entanglement Concentration Using Entanglement Swapping

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The quantum information network is important in establishing next-generation technology. In particular, maximal and long-distance entangled states are important in realizing a number of quantum information technologies, such as teleportation, key distribution and so forth. Entanglement swapping is a scheme that creates a long-distance network by using multiple short ones. Entanglement swapping protocols applied to non-maximal correlations have been thoroughly investigated by various people. Rather than providing any new analytic results, some examples of a numerical approach will be provided in this paper. In particular, the paper reveals the existence of different classes of coefficients that approximate the optimal outcome (i.e., the weaker average maximal entanglement between the two initial states). The new class of states is non-trivial in the sense that their coefficients are just as widely distributed as the coefficients of states satisfying optimality conditions are. Moreover, we will numerically examine entanglement swapping methods and show the distribution of optimal and general coefficients for three and four 2-level correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Peres, Quantum theory: concepts and methods (Kluwer, Dordrecht, 1997).

    MATH  Google Scholar 

  2. A. Einstein, B. Podolsky and N. Rosen, Phys. Rev. 47, 777 (1935).

    Article  ADS  Google Scholar 

  3. J. S. Bell, Physics 1, 195 (1964).

    Article  Google Scholar 

  4. A. Aspect, J. Dalibard and G. Roger, Phys. Rev. Lett. 49, 1804 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  5. D. Deutsch, Proc. R. Soc. Lond. A 400, 97 (1985).

    Article  ADS  Google Scholar 

  6. C. H. Bennett and G. Brassard, in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (Bangalore, India, December 1984), p. 75.

    Google Scholar 

  7. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe and J. L. O’Brian, Nature 464, 45 (2010).

    Article  ADS  Google Scholar 

  8. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph J. P. Dowling and G. J. Milburn, Rev. Mod. Phys. 79, 135 (2007).

    Article  ADS  Google Scholar 

  9. P. Shor, in Proceedings of the 35th Annual Symposium on the Foundations of Computer Science, edited by S. Goldwasser (IEEE Computer Society, Los Alamitos, CA), p. 124.

  10. A. Ekert, Phys. Rev. Lett. 67, 661 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  11. J. I. Cirac, A. Acin, M. Lewenstein and J. Wehr, Phys. Rev. A 77, 022308 (2008).

    Article  ADS  Google Scholar 

  12. M. Zukowski, A. Zeilinger, M. A. Horne and A. K. Ekert, Phys. Rev. Lett. 71, 4287 (1993).

    Article  ADS  Google Scholar 

  13. N. Boulant, K. Edmonds, J. Yang, M. A. Pravia and D. G. Cory, Phys. Rev. A 68, 032305 (2003).

    Article  ADS  Google Scholar 

  14. R. Kaltenbaek, R. Prevedel, M. Aspelmeyer and A. Zeilinger, Phys. Rev. A 79, 040302 (2009).

    Article  ADS  Google Scholar 

  15. C. H. Bennett, H. J. Bernstein S. Popescu and B. Schumacher, Phys. Rev. A 53, 2046 (1996).

    Article  ADS  Google Scholar 

  16. H-K. Lo and S. Popescu, Phys. Rev. A 63, 022301 (2001).

    Article  ADS  Google Scholar 

  17. D. Jonathan and M. B. Plenio, Phys. Rev. Lett. 83, 1455 (1999).

    Article  ADS  Google Scholar 

  18. L. Hardy, Phys. Rev. A 60, 1912 (1999).

    Article  ADS  Google Scholar 

  19. S. Popescu and D. Rohrlich, Phys. Rev. A 56, R3319 (1997).

    Article  ADS  Google Scholar 

  20. S. Bose, V. Vedral and P. L. Knight, Phys. Rev. A 57, 822 (1998).

    Article  ADS  Google Scholar 

  21. B-S. Shi, Y. Jiang and G-C. Guo, Phys. Rev. A 62, 054301 (2000).

    Article  ADS  Google Scholar 

  22. L. Hardy and D. Song, Phys. Rev. A 62, 052315 (1999).

    Article  ADS  Google Scholar 

  23. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres and W. K. Wootters, Phys. Rev. Lett. 70, 1895 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  24. G.’t Hooft, Class. Quant. Grav. 16, 3263 (1999).

    Article  ADS  Google Scholar 

  25. S. Wolfram, A new kind of science (Wolfram media, Champaign, 2002).

    MATH  Google Scholar 

  26. P. A. Zizzi, Spacetime at the Planck scale: the quantum computer view. The Foundations of Quantum Mechanics, Historical Analysis and Open Questions-Cesena 2004 (Cesena, Italy 2006), p. 345.

    Google Scholar 

  27. S. Lloyd, Programming the universe (New York, 2006).

    Google Scholar 

  28. V. Vedral, Decoding reality: the universe as quantum information (Oxford University Press, 2010).

    MATH  Google Scholar 

  29. J. Schmidhuber, Computer universes and an algorithmic theory of everything. 2015. arXiv:1501.01373 (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daegene Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, D. Some Numerical Cases of Entanglement Concentration Using Entanglement Swapping. J. Korean Phys. Soc. 74, 421–427 (2019). https://doi.org/10.3938/jkps.74.421

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.74.421

Keywords

Navigation