Skip to main content
Log in

Efficiency of indoleacetic acid, gibberellic acid and ethylene synthesized in vitro by Fusarium culmorum strains with different effects on cereal growth

  • Section Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Three different Fusarium culmorum strains having a pathogenic, a deleterious (deleterious rhizosphere microorganism), or a promoting (plant growth promoting fungus) effect on plant growth were studied for their ability to synthesize in vitro the phytohormones indoleacetic acid (IAA), gibberellic acid (GA), and ethylene. All the phytohormones tested were synthesized in cultures supplemented with wide concentration ranges of glucose and tryptophan or methionine (precursors of phytohormone synthesis). The amounts of these secondary metabolites synthesized by the particular strains were found to be significantly different. The non-pathogenic PGPF strain (DEMFc2) synthesized the highest amounts of IAA and GA, a fact that could be responsible for the growth-promoting properties of this strain. A pathogenic strain synthesized the highest amount of ethylene, which could be responsible for the negative effect of this strain on plant growth. F. culmorum isolates with a high capacity for IAA synthesis also have a high capacity for GA synthesis and irrespective of the growth conditions, a high positive correlation (R > 0.9) between the concentrations of synthesized IAA and GA in F. culmorum cultures was found. It is worth mentioning that the optimal conditions for the growth of F. culmorum isolates and the synthesis of the individual phytohormones differed from one another. The optimal growth conditions were 1.0% of glucose and 9.9 mM of methionine or 6.0 mM of tryptophan. The optimal conditions for ethylene synthesis were 0.5% of glucose and 6.6 mM of methionine, whereas 1.0% of glucose and 9.0 mM of tryptophan were optimal for IAA and GA synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CFU:

colony forming units

DRMO:

deleterious rhizosphere microorganism

GA:

gibberellic acid

IAA:

indoleacetic acid

LSD:

least significant difference

PGPF:

plant growth promoting fungus

References

  • Adams D.O. & Yang S.F. 1979. Ethylene biosynthesis: identification of 1-aminocyclopropane-l-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc. Natl. Acad. Sci. USA 76: 170–174.

    Article  CAS  PubMed  Google Scholar 

  • Ahmad F., Ahmad I. & Khan M.S. 2008. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol. Res. 163: 173–181.

    Article  CAS  PubMed  Google Scholar 

  • Akhtar M.J., Arshad M., Khalid A. & Mahmood M.H. 2005. Substrate-dependent biosythesis of ethylene by rhizosphere soil fungi and its influence on etiolated pea seedlings. Pedobiologia 49: 211–219.

    Article  CAS  Google Scholar 

  • Alef K. & Nannipieri P. 2005. Methods in Applied Soil Microbiology and Biochemistry. Academic Press, London, San Diego, 576 pp.

    Google Scholar 

  • Armitage P. & Berry G. 1987. Statistical Methods in Medical Research. Blackwell Publications, Oxford, 361 pp.

    Google Scholar 

  • Arshad M. & Frankenberger Jr W.T. 1989. Biosynthesis of ethylene by Acremonium falciforme. Soil Biol. Biochem. 21: 633–638.

    Article  CAS  Google Scholar 

  • Bayram O. & Braus G.H. 2012. Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins. FEMS Microbiol. Rev. 36: 1–24.

    Article  CAS  PubMed  Google Scholar 

  • Betina V. 1995. Differentiation and secondary metabolism in some prokaryotes and fungi. Folia Microbiol. 40: 51–67.

    Article  CAS  Google Scholar 

  • Bilkay I.S., Karakao S. & Akson N. 2010. Indole-3-acetic acid and gibberellic acid production in Aspergillus niger. Turk. J. Biol. 34: 313–318.

    CAS  Google Scholar 

  • Billington D.C., Golding B.T. & Primrose S.B. 1979. Biosynthesis of ethylene from methionine. Isolation of the putative intermediate 4-methylthio-2-oxobutanoate from culture fluids of bacteria and fungi. Biochem. J. 182: 827–836.

    CAS  PubMed  Google Scholar 

  • Brandl M.T., Lindow S.E. 1998. Contribution of indole-3-acetic acid production to the epiphytic fitness of Erwinia herbicola. Appl. Environ. Microbiol. 64: 3256–3263.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brückner B. 1992. Regulation of gibberellin formation by the fungus Gibberella fujikuroi, pp. 129–143. In: Chadwick D.J. & Whelan J. (eds) Secondary Metabolites: Their Function and Evolution. Ciba Foundation Symposium, vol. 171. Wiley, Chichester.

    Google Scholar 

  • Brückner B., Blechschmidt D. & Recknagel R.D. 1991. Optimalization of nutrient medium for biosynthesis of gibberellic acid. J. Basic Microb. 31: 243–250.

    Article  Google Scholar 

  • Chagué V., Danit L.V., Siewers V., Schulze-Gronover C., Tudzynski P., Tudzynski B. & Sharon A. 2006. Ethylene sensing and gene activation in Botrytis cinerea: a missing link in ethylene regulation of fungus-plant interactions? Mol. Plant Microbe Interact. 19: 33–42.

    Article  PubMed  Google Scholar 

  • Chagué V., Elad Y., Barakat R., Tudzynski P. & Sharon A. 2002. Ethylene biosynthesis in Botrytis cinerea. FEMS Microbiol. Ecol. 40: 143–149.

    Article  PubMed  Google Scholar 

  • Cihangir N., Aksöz N. & Bozcuk S. 1996. The interaction of microorganismal plant growth regulators. Turk. J. Biol. 20: 135–142.

    CAS  Google Scholar 

  • Cristescu S.M., De Martinis D., Hekkaert S.L., Parker D.H. & Harren F.J.M. 2002. Ethylene production by Botrytis cinerea in vitro and in tomato. Appl. Environ. Microbiol. 68: 5342–5350.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Daundasekera M., Joyce D., Aked J. & Adikaram N. 2003. Ethylene production by Colletotrichum musae in vitro. Physiol. Mol. Plant Pathol. 62: 21–28.

    Article  CAS  Google Scholar 

  • Daundasekera W.A.M., Joyce D.C, Adikaram N.K.B. & Terry L.A. 2008. Pathogen-produced ethylene and the Colletotrichum musae-banana fruit pathosystem. Australasian Plant Pathol. 37: 448–453. Davies P.J. 1995. Plant Hormones: Physiology, Biochemistry and Molecular Biology. Kluwer Academic Publishers, Dordrecht, 835 pp.

    Article  CAS  Google Scholar 

  • Dobbelaere S., Croonenborggs A., Thys A., Broek A.V. & Vanderleyn I. 1999. Phytostymulatory effect of Azospirillum brasilense wild type and mutant altered in IAA production of wheat. Plant Soil 212: 155–164.

    Article  CAS  Google Scholar 

  • Fox E.M. & Howlett B.J. 2008. Secondary metabolism: regulation and role in fungal biology. Curr. Opin. Microbiol. 11: 481–487.

    Article  CAS  PubMed  Google Scholar 

  • Glick B.R. 2005. Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol. Lett. 251: 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Glick B.R., Penrose D.M. & Li J. 1998. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J. Theor. Biol. 190: 63–68.

    Article  CAS  PubMed  Google Scholar 

  • Glickmann E. & Dessaux Y. 1995. A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl. Environ. Microbiol. 61: 793–796.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Graham H. & Lindermann R.G. 1980. Ethylene production by ectomycorrhizal fungi, Fusariuin oxysporum f. sp. pini, and by aseptically synthesized ectomycorrhizae and Fusarium infected Douglas-fir roots. Can. J. Microbiol. 26: 1340–1347.

    Article  CAS  PubMed  Google Scholar 

  • Grant M.R. & Jones J.D.G. 2009. Perspective hormone (Dis) harmony moulds plant health and disease. Science 324: 750–752.

    Article  CAS  PubMed  Google Scholar 

  • Hasan H.A.H. 2002. Gibberellin and auxin production by plant root-fungi and their biosynthesis under salinity-calcium interaction. Rostlinna Vyroba 48: 101–106.

    CAS  Google Scholar 

  • Hedden P. & Thomas G.S. 2012. Gibberellin biosynthesis and its regulation. Biochem. J. 444: 11–25.

    Article  CAS  PubMed  Google Scholar 

  • Hedden P., Phillips A.L, Rojas M.C., Carrera E. & Tudzynski B. 2002. Gibberellin biosynthesis in plants and fungi: a case of convergent evolution? J. Plant Growth Regul. 20: 319–331.

    Article  Google Scholar 

  • Jaroszuk-Ściseł J. & Kurek E. 2012. Hydrolysis of fungal and plant cell walls by enzymatic complexes from cultures of Fusarium isolates with different aggressiveness to rye (Secale cereale). Arch. Microbiol. 194: 653–665.

    Article  PubMed  Google Scholar 

  • Jaroszuk-Ściseł J., Kurek E., Rodzik B. & Winiarczyk K. 2009. Interactions between rye (Secale cereale) root border cells (RBCs) and pathogenic and nonpathogenic rhizosphere strains of Fusarium culmorum. Mycol. Res. 113: 1053–1061.

    Article  PubMed  Google Scholar 

  • Jaroszuk-Ściseł J., Kurek E., Słomka A., Janczarek M. & Rodzik B. 2011. Activities of cell wall degrading enzymes in autolyzing cultures of three Fusarium culmorum isolates: growth promoting, deleterious and pathogenic to rye (Secale cereale). Mycologia 103: 929–945.

    Article  PubMed  Google Scholar 

  • Jaroszuk-Ściseł J., Kurek E., Winiarczyk K., Baturo A. & Łukanowski A. 2008. Colonization of root tissues and protection against Fusarium wilt of rye (Secale cereale) by nonpathogenic rhizosphere strains of Fusarium culmorum. Biol. Control 45: 297–307.

    Article  Google Scholar 

  • Jia Y.J., Ito H., Matsiu H. & Honma M. 2000. 1-aminocyclopropane-1-carboxylate (ACC) deaminase induced by ACC synthesized and accumulated in Penicillium citrinum intercellular spaces. Biosci. Biotechnol. Biochem. 64: 299–305.

    Article  CAS  PubMed  Google Scholar 

  • Jia Y.J., Kakuta Y., Sugawara M., Igarashi T., Oki N., Kisaki M., Shoji T., Kanetuna Y., Horita T., Matsui H. & Honma M. 1999. Synthesis and degradation of 1-aminocyclopropane-1-carboxylic acid by Penicillium citrinum. Biosci. Biotechnol. Biochem. 63: 542–549.

    Article  CAS  PubMed  Google Scholar 

  • Karadeniz A., Topeuoglu S.F. & Inan S. 2006. Auxin, gibberellin, cytokinin and abscisic acid production in some bacteria. World J. Microbiol. Biotechnol. 22: 1061–1064.

    Article  CAS  Google Scholar 

  • Kawaide H. 2006. Biochemical and molecular analyses of gibberellin biosynthesis in fungi. Biosci. Biotechnol. Biochem. 70: 583–590.

    Article  CAS  PubMed  Google Scholar 

  • Kende H. & Zeevaart J.A.D. 1997. The five “classical” plant hormones. Plant Cell 9: 1197–1210.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Khan S.A., Hamayun M., Yoon H., Kim H., Suh S., Hwang S., Kim J., Lee I., Choo Y., Yoon U., Kong W., Lee B. & Kim J. 2008. Plant growth promotion and Penicillium citrinum. BMC Microbiol. 8: 231.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kiyohara S., Honda H., Shimizu N., Ejima C., Hamasaki R. & Sawa S. 2011. Tryptophan auxotroph mutants suppress the superroot2 phenotypes, modulating IAA biosynthesis in Arabidopsis. Plant Signal. Behav. 6: 1351–1355.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kolattukudy P., Li D., Hwang C.S. & Flaishman M.A. 1995. Host signals in fungal gene expression involved in penetration into the host. Can. J. Bot. 73: 160–168.

    Article  Google Scholar 

  • Kumar K.V., Singh N., Behl H.M. & Srivastava S. 2008. Influence of plant growth promoting bacteria and its mutant on heavy metal toxicity in Brassica juncea grown in fly ash amended soil. Chemosphere 72: 678–683.

    Article  CAS  PubMed  Google Scholar 

  • Kurek E., Machowicz Z., Kulpa D. & Słomka A. 1994. The microorganisms of rye (Secale cereale L.) rhizosphere. Acta Microbiol. Pol. 2: 251–257.

    Google Scholar 

  • Lieberman M., Kunishi A.T., Mapson L.W. & Wardale D.A. 1965. Ethylene production from methionine. Biochem. J. 97: 449–459.

    CAS  PubMed  Google Scholar 

  • López-Berges M.S., Hera C., Sulyok M., Schäfer K., Capilla J., Guarro J. & Di Pietro A. 2013. The velvet complex governs mycotoxin production and virulence of Fusarium oxysporum on plant and mammalian hosts. Mol. Microbiol. 87: 49–65.

    Article  PubMed  Google Scholar 

  • MacMillan J. 1999. Biosynthesis of the gibberellin plant hormones. Nat. Prod. Rep. 14: 221–243.

    Article  Google Scholar 

  • MacMillan J. 2002. Occurrence of gibberellins in vascular plants, fungi, and bacteria. J. Plant Growth Regul. 20: 387–442.

    Article  Google Scholar 

  • Malladi A. & Burns J.K. 2007. Communication by plant growth regulators in roots and shoots of horticultural crops. HortScience 42: 1113–1117.

    CAS  Google Scholar 

  • Martin J.P. 1950. Use of acid rose bengal and streptomycin in the plate methods for estimating soil fungi. Soil Sci. 38: 215–220.

    Article  Google Scholar 

  • Martinez V.M, Osuna J., Paredes-Lopez O. & Guevara F. 1997. Production of indole-3-acetic acid by several wild-type strains of Ustilago maydis. World J. Microbiol. Biotechnol. 13: 295–298.

    Article  CAS  Google Scholar 

  • Martín J.F. & Demain A.L. 2002. Unraveling the methioninecephalosporin puzzle in Acremonium chrysogenum. Trends Biotechnol. 20: 502–507.

    Article  PubMed  Google Scholar 

  • Meleigy S.A. & Khalaf M.A. 2009. Biosynthesis of gibberellic acid from milk permeates in repeated batch operation by a mutant Fusarium moniliforme cells immobilized on loofa sponge. Biores. Technol. 100: 374–379.

    Article  CAS  Google Scholar 

  • Merzaeva D.V., Shirokikh I.G. 2010. The production of auxins by the endophytic bacteria of winter rye. Appl. Biochem. Microbiol. 46: 44–50.

    Article  CAS  Google Scholar 

  • Metzger U., Schall C., Zocher G., Unsold I., Stec E., Li S.M., Heide L. & Stehle T. 2009. The structure of dimethylallyl tryptophan synthase reveals a common architecture of aromatic prenyltransferases in fungi and bacteria. Proc. Natl. Acad. Sci. USA 106: 14309–14314.

    Article  CAS  PubMed  Google Scholar 

  • Molina-Favero C., Creus C.M., Simontachi M., Puntarulo S. & Lamattina L. 2008. Aerobic nitric oxide production by Azospirillum brasilense Sp245 and its influence on root architecture in tomato. Mol. Plant Microbe Interact.21: 1001–1009.

    Article  CAS  Google Scholar 

  • Palmer J.M. & Keller N.P. 2010. Secondary metabolism in fungi: does chromosomal location matter? Curr. Opin. Microbiol. 13: 431–436.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Partida-Martinez L.P. & Heil M. 2011. The microbe-free plant: fact or artifact? Front. Plant Sci. 2: 1–16.

    Article  Google Scholar 

  • Pieterse C.M.J., Leon-Reyes A., Van der Ent S. & Van Wees S.C.M. 2009. Networking by small — molecule hormones in plant immunity. Nat. Chem. Biol. 5: 308–316.

    Article  CAS  PubMed  Google Scholar 

  • Pieterse C.M.J., Van Der Does D., Zamioudis C., Leon-Reyes A. & Van Wees S.C.M. 2012. Hormonal modulation of plant immunity. Annu. Rev. Cell Dev. Biol. 28: 489–521.

    Article  CAS  PubMed  Google Scholar 

  • Pilet P.E. & Chollet R. 1970. Colorimetric determination of indole-3-acetic acid. C. R. Acad. Sci. Ser. D 271: 1675–1678.

    CAS  Google Scholar 

  • Primrose S.B. & Dilworth M.J. 1976. Ethylene production by bacteria. J. Gen. Microbiol. 93: 177–181.

    Article  CAS  PubMed  Google Scholar 

  • Prusty R., Grisafi P. & Fink G.R. 2004. The plant hormone indoleacetic acid induces invasive growth in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 101: 4153–4157.

    Article  CAS  PubMed  Google Scholar 

  • Qadir A., Hewett E.W. & Long P.G. 1997. Ethylene production by Botrytis cinerea. Postharvest Biol. Technol. 11: 85–91.

    Article  CAS  Google Scholar 

  • Qadir A., Hewett E.W., Long P.G. & Dilley D.R. 2011. A non-ACC pathway for ethylene biosynthesis in Botrytis cinerea. Postharvest Biol. Technol. 62: 314–318.

    Article  CAS  Google Scholar 

  • Remans R., Spaepen S. & Vanderleyden J. 2006. Auxin signaling in plant defense. Science 313: 171.

    Article  PubMed  Google Scholar 

  • Reyes-Dominiques Y., Boedi S., Sulyok M., Wiesenberger G., Stoppacher N., Krska R. & Strauss J. 2012. Heterochromatin influences the secondary metabolism profile in plant pathogen Fusarium graminearum. Fungal Genet. Biol. 49: 39–47.

    Article  Google Scholar 

  • Rios-Iribe E.Y., Flores-Cotera L.B., González Chavira M.M., González-Alatorre G. & Escamilla-Silva E.M. 2011. Inductive effect produced by a mixture of carbon source in the production of gibberellic acid by Gibberella fujikuroi. World J. Microbiol. Biotechnol. 27: 1499–1505.

    Article  CAS  Google Scholar 

  • Salkowski E. 1885. Ueber das Verhalten der Skatolcarbonsaüre im Organismus. Z. Physiol. Chem. 9: 23–33.

    Google Scholar 

  • Scagel C.F. & Linderman R.G. 1998. Relationship between differential in vitro indole-acetic acid or ethylene. Symbiosis 24: 13–34.

    CAS  Google Scholar 

  • Seyis-Bilkay I., Karakoç Ş. & Aksöz N. 2010. Indole-3-acetic acid and gibberellic acid production in Aspergillus niger Turk. J. Biol. 34: 313–318.

    Google Scholar 

  • Sharon A., Elad Y., Barakat R. & Tudzynski P. 2007. Phytohormones in Botrytis-plant interactions, pp. 163–179. In: Elad Y., Williamson B., Tudzynski P. & Delen N. (eds) Botrytis: Biology, Pathology and Control, Springer.

    Chapter  Google Scholar 

  • Shukla R., Srivastava A.K. & Chord S. 2003. Bioprocess strategies and recovery processes in gibberellic acid fermentation. Biotechnol. Bioprocess Eng. 8: 269–278.

    Article  CAS  Google Scholar 

  • Sosa-Morales M.E., Guevara-Lara F., Martínez-Juárez V.M. & Paredes-López O. 1997. Production of indole-3-acetic acid by mutant strains of Ustilago maydis (maize smut/huitlacoche). Appl. Microbiol. Biotechnol. 48: 726–729.

    Article  CAS  Google Scholar 

  • Spaepen S., Vanderleyden J. & Remans R. 2007. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev. 31: 425–448.

    Article  CAS  PubMed  Google Scholar 

  • Strauss J. & Reyes-Dominiques Y. 2011. Regulation of secondary metabolism by chromatin structure and epigenetic codes. Fungal Genet. Biol. 48: 62–69.

    Article  CAS  PubMed  Google Scholar 

  • Tien T.M., Gaskins M.H & Hubbell D.H. 1979. Plant growth substances produced by Azospirillum bransilense and their effect on the growth of pearl millet (Pennisetumn americanum L.) Appl. Environ. Microbiol. 37: 1016–1024.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tsavkelova E.A., Bömke Ch., Netrusov A.I., Weiner J. & Tudzynski B. 2008. Production of gibberellic acids by an orchidassociated Fusarium proliferatum strain. Fungal Genet. Biol. 45: 1393–1403.

    Article  CAS  PubMed  Google Scholar 

  • Tudzynski B. 1999. Biosynthesis of gibberellins in Gibberella fujikuroi: biomolecular aspects. Appl. Microbiol. Biotechnol. 52: 298–310.

    Article  CAS  PubMed  Google Scholar 

  • Tudzynski B., Rojas M.C., Gaskin P. & Hedden B. 2002. The gibberellin 20-oxidase of Gibberella fujikuroi is a multifunctional monooxygenase. J. Biol. Chem. 277: 21246–21253.

    Article  CAS  PubMed  Google Scholar 

  • Tudzynski B. & Sharon A. 2002. Biosynthesis, biological role and application of fungal phytohormones, pp. 183–211. In: Esser K., Bennett J.W., Heine D. & Osiewacz H.D. (eds) The Mycota: A Comprehensive Treatise on Fungi as Experimental Systems for Basic and Applied Research. Charter 9, Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  • Wang K. L.C., Hai L. & Ericker J.R. 2002. Ethylene biosynthesis and signaling networks. Plant Cell 14: 131–151.

    Google Scholar 

  • Williamson C.E. 1950. Ethylene, a metabolic product of diseased or injured plants. Phytopathology 40: 205–208.

    CAS  Google Scholar 

  • Yamaguchi S. 2008. Gibberellin metabolism and its regulation. Annu. Rev. Plant Biol. 59: 225–251.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jolanta Jaroszuk-Ściseł.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaroszuk-Ściseł, J., Kurek, E. & Trytek, M. Efficiency of indoleacetic acid, gibberellic acid and ethylene synthesized in vitro by Fusarium culmorum strains with different effects on cereal growth. Biologia 69, 281–292 (2014). https://doi.org/10.2478/s11756-013-0328-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-013-0328-6

Key words

Navigation