Skip to main content
Log in

Reactive oxygen species and seed germination

  • Review
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Reactive oxygen species (ROS) are continuously produced by the metabolically active cells of seeds, and apparently play important roles in biological processes such as germination and dormancy. Germination and ROS accumulation appear to be linked, and seed germination success may be closely associated with internal ROS contents and the activities of ROS-scavenging systems. Although ROS were long considered hazardous molecules, their functions as cell signaling compounds are now well established and widely studied in plants. In seeds, ROS have important roles in endosperm weakening, the mobilization of seed reserves, protection against pathogens, and programmed cell death. ROS may also function as messengers or transmitters of environmental cues during seed germination. Little is currently known, however, about ROS biochemistry or their functions or the signaling pathways during these processes, which are to be considered in the present review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad P., Sarwat M. & Sharma S. 2008. Reactive oxygen species, antioxidants and signaling in plants. J. Plant Biol. 51: 167–173.

    Article  CAS  Google Scholar 

  • Bailly C. 2004 Active oxygen species and antioxidants in seed biology. Seed Sci. Res. 14: 93–107.

    Article  CAS  Google Scholar 

  • Bailly C., Audigier C., Ladonne F., Wagner M.H., Coste F., Corbineau F. & Côme D. 2001. Changes in oligosaccharide content and antioxidant enzyme activities in developing bean seeds as re-lated to acquisition of drying tolerance and seed quality. J. Exp. Bot. 52: 701–708.

    PubMed  CAS  Google Scholar 

  • Bailly C., Benamar A., Corbineau F. & Côme D. 1996. Changes in superoxide dismutase, catalase and glutathione reductase activities as related to seed deterioration during accelerated aging of sun-flower seeds. Physiol. Plant. 97: 104–110.

    Article  CAS  Google Scholar 

  • Bailly C., El-Maarouf-Bouteau H. & Corbineau F. 2008. From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. C. R. Biologies 331: 806–814. 2008

    Article  PubMed  CAS  Google Scholar 

  • Bailly C. & Kranner I. 2011. Methods for analyses of reactive oxygen species and antioxidants in relation to seed longevity and germination. Methods Mol. Biol. 773: 343–367.

    Article  PubMed  CAS  Google Scholar 

  • Barba-Espín G., Diaz-Vivancos P., Job D., Belghazi M., Job C. & Hernandes J.A. 2011. Understanding the role of H2O2 during pea seed germination: a combined proteomic and hormone profiling approach. Plant Cell Environ. 34: 1907–1919.

    Article  PubMed  Google Scholar 

  • Bazin J., Langlade N., Vincourt P., Arribat S., Balzergue S., El-Maarouf-Bouteau H. & Bailly C.. 2011. Targeted mRNA oxidation regulates sunflower seed dormancy alleviation during dry after-ripening. Plant Cell 23: 2196–2208

    Article  PubMed  CAS  Google Scholar 

  • Buetler T.M., Krauskopf A. & Ruegg U.T. 2004. Role of superoxide as a signaling molecule. News Physiol. Sci. 19: 120–123.

    PubMed  CAS  Google Scholar 

  • Carol R.J. & Dolan L. 2006. The role of reactive oxygen species in cell growth: Lessons from root hairs. J. Exp. Bot. 57: 1829–1834.

    Article  PubMed  CAS  Google Scholar 

  • Côme D. & Corbineau F. 1996. Metabolic damage related to desiccation sensitivity, pp. 107–120. In: Ouédrago A.S.S., Poulsen K. & Stubsgaard, F. (eds), Intermediate/Recalcitrant Tropical Forest Tree Seeds. IP-GRI, Roma.

    Google Scholar 

  • Corbineau F., Gay-Mathieu C., Vinel D. & Côme D. 2002. Decrease in sunflower (Helianthus annuus L.) seed viability caused by high temperature as related to energy metabolism, membrane damage and lipid composition. Physiol. Plant. 116: 489–496.

    Article  CAS  Google Scholar 

  • Dat J., Vandenabeele S., Vranová E., Van Montagu M., Inzé D. & Van Breusegem F. 2000. Dual action of the active oxygen species during plant stress responses. Cell. Mol. Life Sci. 57: 779–795.

    Article  PubMed  CAS  Google Scholar 

  • del Río L.A., Sandalio L.M., Corpas F.J., Palma J.M. & Barroso J.B. 2006. Reactive oxygen species and reactive nitrogen species in peroxisomes: production, scavenging, and role in cell signaling. Plant Physiol. 141: 330–335.

    Article  PubMed  Google Scholar 

  • Desikan R., Hancock J.T., Coffey M.J. & Neill N.J. 1996. Generation of active oxygen in elicited cells of Arabidopsis thaliana is mediated by a NADPH oxidase-like enzyme. FEBS Lett. 382: 213–217.

    Article  PubMed  CAS  Google Scholar 

  • Doke N., Miura Y., Sanchez L.M. & Kawakita K. 1994. Involvement of superoxide in signal transduction: responses to attack by pathogens, physical and chemical shocks and UV irradiation, pp. 177–218. In: Foyer C.H. & Mullineaux P. (eds), Causes of Photooxidative Stress and Amelioration of Defense Systems in Plants, Boca Raton, CRC Press.

    Google Scholar 

  • El-Maarouf-Bouteau H. & Bailly C. 2008. Oxidative signaling in seed germination and dormancy. Plant Signal. Behav. 3: 175–182.

    Article  PubMed  Google Scholar 

  • Fath A., Bethke P., Beligni V. & Jones R. 2002. Active oxygen and cell death in cereal aleurone cells. J. Exp. Bot. 53: 1273–82.

    Article  PubMed  CAS  Google Scholar 

  • Farrant J.M., Bailly C., Leymarie J., Hamman B., Côme D. & Corbineau F. 2004. Wheat seedlings as a model to understand desiccation tolerance and sensitivity. Physiol. Plant. 120: 563–574.

    Article  PubMed  CAS  Google Scholar 

  • Finch-Savage W.E., Cadman C.S.C., Toorop P.E., Lynn J.R. & Hilhorst H.W.M. 2007. Seed dormancy release in Arabidopsis Cvi by dry after-ripening, low temperature, nitrate and light shows common quantitative patterns of gene expression directed by environmentally specific sensing. Plant J. 51: 60–78.

    Article  PubMed  CAS  Google Scholar 

  • Foyer C. & Noctor G. 2009. Redox regulation in photosynthetic organisms: signaling, acclimation and practical implications. Antioxid. Redox Signal. 11: 861–905.

    Article  PubMed  CAS  Google Scholar 

  • Gapper C. & Dolan L. 2006. Control of plant development by reactive oxygen species. Plant Physiol. 141: 341–345.

    Article  PubMed  CAS  Google Scholar 

  • Gill S.S. & Tuteta N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48: 909–930.

    Article  PubMed  CAS  Google Scholar 

  • Gomes M.P., Carneiro M.M.L.C, Nogueira C.O.G., Soares A.M. & Garcia Q.S. 2012. The system modulating ROS content in germinating seeds of two Brazilian savanna tree species exposed to As and Zn. Acta Physiol. Plant. DOI: 10.1007/s11738-012-1140-6

    Google Scholar 

  • Grant J.J. & Loake G.J. 2000. Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiol. 124: 21–29.

    Article  PubMed  CAS  Google Scholar 

  • Jabs T., Dietrich R.A. & Dangl J.L. 1996. Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science 27: 1853–1856.

    Article  Google Scholar 

  • Job C., Laugel S., Duval M., Gallardo K. & Job D. 2001. Biochemical characterization of atypical biotinylation domains in seed proteins. Seed Sci. Res. 11: 149–16.

    CAS  Google Scholar 

  • Job C., Rajjou L., Lovigny Y., Belghazi M. & Job D. 2005. Patterns of protein oxidation in Arabidopsis seeds and during germination. Plant Physiol. 138: 790–802.

    Article  PubMed  CAS  Google Scholar 

  • Karpinski S., Reynolds H., Karpinska B., Wingsle G., Creis-sen G. & Mullineaux P. 1999. Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science 284: 654–657.

    Article  PubMed  CAS  Google Scholar 

  • Kermode A.R. & Finch-Savage B.E. 2002. Desiccation sensitivity in orthodox and recalcitrant seeds in relation to development, pp 149–184. In: Black M. & Pritchard H.W. (eds), Desiccation and Survival in Plants: Drying without Dying, CABI Publishing, Wallingford.

    Chapter  Google Scholar 

  • Kovtun Y., Chiu W.L., Tena G. & Sheen J. 2000. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc. Natl. Acad. Sci. USA 97: 2940–2945.

    Article  PubMed  CAS  Google Scholar 

  • Kranner I. & Colville L.E. 2011. Metals and seeds: biochemical and molecular implications and their significance for seed germination. Environ. Exp. Bot. 72: 93–105.

    Article  CAS  Google Scholar 

  • Kruger N.J. & von Schaewen A. 2003. The oxidative pentose phosphate pathway: structure and organization. Curr. Opin. Plant Biol. 6: 236–246.

    Article  PubMed  CAS  Google Scholar 

  • Laloi C., Apel K. & Danon A. 2004. Reactive oxygen signalling: the latest news. Curr. Opin. Plant Biol. 7: 323–328.

    Article  PubMed  CAS  Google Scholar 

  • Lefevre I., Marchal G., Correal E., Zanuzzi A. & Lutts S. 2009. Variation in response to heavy metals during vegetative growth in Dorycnium pentaphyllum Scop. Plant Growth Regul. 59: 1–11.

    Article  CAS  Google Scholar 

  • Lehner A., Bailly C., Flechel B., Poels P., Côme D. & Corbineau F. 2006. Changes in wheat seed germination ability, soluble carbohydrate and antioxidant enzyme activities in the embryo during the desiccation phase of maturation. J. Cereal Sci. 43: 175–182.

    Article  CAS  Google Scholar 

  • Levine A., Tenhaken R., Dixon R. & Lamb C. 1994. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79: 583–593.

    Article  PubMed  CAS  Google Scholar 

  • Leymarie J., Vitkauskaité G., Hoang H.H., Gendreau E., Chazoule V., Meimoun P., Corbineau F., El-Maarouf-Bouteau H. & Bailly C. 2012. Role of reactive oxygen species in the regulation of Arabidopsis seed dormancy. Plant Cell Physiol. 53: 96–106.

    Article  PubMed  CAS  Google Scholar 

  • Liszkay A., van der Zalm E. & Schopfer P. 2004. Production of reactive oxygen intermediates (O (•−)(2) , H(2)O(2), and (·)OH) by maize roots and their role in wall loosening and elongation growth. Plant Physiol. 136: 3114–3123.

    Article  PubMed  CAS  Google Scholar 

  • McDonald M.B. 1999. Seed deterioration: physiology, repair and assessment. Seed Sci. Tech. 27: 177–237.

    Google Scholar 

  • Miller G., Shulaev, V. & Mittler R. 2008. Reactive oxygen signaling and abiotic stress. Physiol. Plant. 133: 481–489.

    Article  PubMed  CAS  Google Scholar 

  • Mou Z., Fan, W.H. & Dong X.N. 2003. Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113: 935–944.

    Article  PubMed  CAS  Google Scholar 

  • Müller K., Carstens A.C., Linkies A., Torres M.A. & Leubner-Metzger G. 2009. The NADPH-oxidase AtrbohB plays a role in Arabidopsis seed after-ripening. New Phytol. 184: 885–897.

    Article  PubMed  Google Scholar 

  • Munné-Bosch S., Ońate M., Oliveira P.G. & Garcia Q.S.2011. Changes in phytohormones and oxidative stress markers in buried seeds of Vellozia alata. Flora 206: 704–711.

    Article  Google Scholar 

  • Neill S., Desikan R. & Hancock J. 2002. Hydrogen peroxide signalling. Curr. Opin. Plant Biol. 5: 388–395.

    Article  PubMed  CAS  Google Scholar 

  • Noctor G., De Paepe R. & Foyer C.H. 2007. Mitochondrial redox biology and homeostasis in plants. Trends Plant. Sci. 12: 125–134.

    Article  PubMed  CAS  Google Scholar 

  • Oracz K., El-Maarouf-Bouteau H., Kranner I., Bogatek R., Corbineau F. & Bailly C. 2009. The mechanisms involved in seed dormancy alleviation by hydrogen cyanide unravel the role of reactive oxygen species as key factors of cellular signaling during germination. Plant Physiol. 150: 494–505.

    Article  PubMed  CAS  Google Scholar 

  • Oracz K., El-Maarouf-Bouteau H., Farrant J.M., Cooper K., Belghazi M., Job C., Job D., Corbineau F. & Bailly C. 2007. ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation. Plant J. 50: 452–465.

    Article  PubMed  CAS  Google Scholar 

  • Pergo E.M. & Ishii-Iwamoto E.L. 2011. Changes in energy metabolism and antioxidant defense systems during seed germination of the weed species Ipomoea triloba L. and the responses to allelochemicals. J. Chem. Ecol. 37: 500–513.

    Article  PubMed  CAS  Google Scholar 

  • Prasad T.K., Anderson M.D., Martin B.A. & Stewart C.R. 1994. Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell 6: 65–74.

    PubMed  CAS  Google Scholar 

  • Pukacka S. & Ratajczak E. 2007. Age-related biochemical changes during storage of beech (Fagus sylvatica L.) seeds. Seed Sci. Res. 17: 45–53.

    Article  CAS  Google Scholar 

  • Puntarulo S., Sanchez R.A. & Boveris A. 1988. Hydrogen peroxide metabolism in soybean embryonic axes at the onset of germination. Plant Physiol. 86: 626–30.

    Article  PubMed  CAS  Google Scholar 

  • Rajjou L., Lovigny Y., Groot S.P.C., Belghazi M., Job C. & Job D. 2008. Proteome-wide characterization of seed aging in Arabidopsis: A comparison between artificial and natural aging protocols. Plant Physiol 148: 620–641.

    Article  PubMed  CAS  Google Scholar 

  • Rajjou L. Duval M., Gallardo K., Catusse J., Bally J., Job C. & Job D. 2012. Seed germination and vigor. Annu. Rev. Plant Biol. 63: 507–533.

    Article  PubMed  CAS  Google Scholar 

  • Rhoads D.M., Umbach A.L., Subbaiah C.C. & Siedow J.N. 2006. Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiol. 141: 357–366.

    CAS  Google Scholar 

  • Rodriguez-Serrano M., Romero-Puertas M.C., Pazmino D.M., Testillano P.S., Risueno M.C., del Rio L.A. & Sandalio L.M. 2009. Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiol. 150: 229–243.

    Article  PubMed  CAS  Google Scholar 

  • Schweikert C., Liszkay A. & Schopfer P. 2002. Polysaccharide degradation by Fenton reaction- or peroxidase-generated hydroxyl radicals in isolated plant cell walls. Phytochem. 61: 31–35.

    Article  CAS  Google Scholar 

  • Sharma I. 2012. Arsenic induced oxidative stress in plants. Biologia 67: 447–453.

    Article  CAS  Google Scholar 

  • Shetty N.P., Jørgensen H.J.L., Jensen J.D., Collinge D.B. & Shetty H.S. 2008. Roles of reactive oxygen species in interactions between plants and pathogens. Eur. J. Plant Pathol. 121: 267–280.

    Article  CAS  Google Scholar 

  • Sun W.K. & Leopold A.C. 1995. The Maillard reaction and oxidative stress during aging of soybean seeds. Physiol. Plant. 94: 94–104.

    Article  CAS  Google Scholar 

  • Tanou G., Job C., Belghazi M., Molassiotis A. & Job D. 2010. Proteomic signatures uncover hydrogen peroxide and nitric oxide in cross-talk signaling network in citrus plants. J. Proteome Res. 9: 5994–6006.

    Article  PubMed  CAS  Google Scholar 

  • Van Breusegem F., Vranová E., Dat J.F. & Inzé D. 2001. The role of active oxygen species in plant signal transduction. Plant Sci. 161: 405–414.

    Article  Google Scholar 

  • Vertucci C.W. & Farrant J.M. 1995. Acquisition and loss of desiccation tolerance, pp. 237–271. In: Kigel J. & Galili G. (eds), Seed Development and Germination, Marcel Dekker, New York.

    Google Scholar 

  • Wisniewski J.P., Cornille P., Agnel J.P. & Montillet J.L. 1999. The extensin multigene family responds differentially to superoxide or hydrogen peroxide in tomato cell cultures. — FEBS Lett. 447: 264–268.

    Article  PubMed  CAS  Google Scholar 

  • Xu H.N., Li K.Z., Yang F.J., Shi Q. & Wang X. 2010. Overexpression of CsNMAPK in tobacco enhanced seed germination under salt and osmotic stresses. Mol. Biol. Rep. 37: 3157–3163.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Pedrosa Gomes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomes, M.P., Garcia, Q.S. Reactive oxygen species and seed germination. Biologia 68, 351–357 (2013). https://doi.org/10.2478/s11756-013-0161-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-013-0161-y

Key words

Navigation