Skip to main content
Log in

Quorum Sensing

A Novel Target for the Treatment of Biofilm Infections

  • Drug Development
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Present-day treatment of chronic infections is based on compounds that aim to kill or inhibit growth of bacteria. Two problems are recognised to be intrinsically associated with this approach: (i) the frequently observed development of resistance to antimicrobial compounds; and (ii) the fact that all therapeutics are considerably less effective on bacteria growing as biofilms when compared with planktonic cells. The latter point is of particular importance as evidence has accumulated over the past few years that most chronic bacterial infections involve biofilms. The discovery of bacterial communication systems (quorum sensing systems) in Gram-negative bacteria which are believed to orchestrate important temporal events during the infectious process, including the production of virulence factors and the formation of biofilms, has afforded a novel opportunity to control the activity of infecting bacteria by other means than interfering with growth. Compounds that interfere with communication systems are present in nature. Such compounds should not only specifically attenuate the production of virulence factors but should also affect biofilm formation in a manner that is unlikely to pose a selective pressure for the development of resistant mutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The use of tradenames is for product identification purposes only and does not imply endorsement.

References

  1. O’Toole G, Kaplan HB, Kolter R. Biofilm formation as microbial development. Annu Rev Microbiol 2000; 54: 49–79

    Article  PubMed  Google Scholar 

  2. Tolker-Nielsen T, Molin S. Spatial organization of microbial biofilm communities. Microb Ecol 2000; 40(2): 75–84

    PubMed  Google Scholar 

  3. Costerton JW, Cheng KJ, Geesey GG, et al. Bacterial biofilms in nature and disease. Annu Rev Microbiol 1987; 41: 435–464

    Article  PubMed  CAS  Google Scholar 

  4. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science 1999; 284(5418): 1318–22

    Article  PubMed  CAS  Google Scholar 

  5. Xu KD, McFeters GA, Stewart PS. Biofilm resistance to antimicrobial agents. Microbiology 2000; 146 (Pt 3): 547–9

    PubMed  CAS  Google Scholar 

  6. Lewis K. Riddle of biofilm resistance. Antimicrob Agents Chemother 2001; 45(4): 999–1007

    Article  PubMed  CAS  Google Scholar 

  7. Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms. Lancet 2001 Jul 14; 358(9276): 135–8

    Article  PubMed  CAS  Google Scholar 

  8. Govan JR, Deretic V. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 1996; 60(3): 539–74

    PubMed  CAS  Google Scholar 

  9. Koch C, Hoiby N. Pathogenesis of cystic fibrosis. Lancet 1993; 341(8852): 1065–9

    Article  PubMed  CAS  Google Scholar 

  10. Tummler B, Kiewitz C. Cystic fibrosis: an inherited susceptibility to bacterial respiratory infections. Mol Med Today 1999; 5(8): 351–8

    Article  PubMed  CAS  Google Scholar 

  11. Lam J, Chan R, Lam K, et al. Production of mucoid microcolonies by Pseudomonas aeruginosa within infected lungs in cystic fibrosis. Infect Immun 1980; 28(2): 546–56

    PubMed  CAS  Google Scholar 

  12. Worlitzsch D, Tarran R, Ulrich M, et al. Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Invest 2002; 109(3): 317–25

    PubMed  CAS  Google Scholar 

  13. Hassett DJ, Cuppoletti J, Trapnell B, et al. Anaerobic metabolism and quorum sensing by Pseudomonas aeruginosa biofilms in chronically infected cystic fibrosis airways: rethinking antibiotic treatment strategies and drug targets. Adv Drug Deliv Rev 2002; 54(11): 1425–43

    Article  PubMed  CAS  Google Scholar 

  14. Singh PK, Schaefer AL, Parsek MR, et al. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 2000; 407(6805): 762–4

    Article  PubMed  CAS  Google Scholar 

  15. Hentzer M, Wu H, Andersen JB, et al. Attenuation of Pseudomonas aeruginosa virulence by quorum-sensing inhibitors. EMBO J 2003; 22(15): 1–13

    Article  Google Scholar 

  16. Schuster M, Lostroh CP, Ogi T, et al. Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol 2003; 185(7): 2066–79

    Article  PubMed  CAS  Google Scholar 

  17. Whiteley M, Lee KM, Greenberg EP. Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 1999; 96(24): 13904–9

    Article  PubMed  CAS  Google Scholar 

  18. Davies DG, Parsek MR, Pearson JP, et al. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 1998; 280(5361): 295–8

    Article  PubMed  CAS  Google Scholar 

  19. Eberl L, Winson MK, Sternberg C, et al. Involvement of N-acyl-L-homoserine lactone autoinducers in controlling the multicellular behaviour of Serratia liquefaciens. Mol Microbiol 1996; 20(1): 127–36

    Article  PubMed  CAS  Google Scholar 

  20. Huber B, Riedel K, Hentzer M, et al. The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility. Microbiology 2001; 147 (Pt 9): 2517–28

    PubMed  CAS  Google Scholar 

  21. Lynch MJ, Swift S, Kirke DF, et al. The regulation of biofilm development by quorum sensing in Aeromonas hydrophila. Environ Microbiol 2002; 4: 18–28

    Article  PubMed  CAS  Google Scholar 

  22. Hentzer M, Riedel K, Rasmussen TB, et al. Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology 2002; 148(1): 87–102

    PubMed  CAS  Google Scholar 

  23. Eberl L. N-acyl homoserinelactone-mediated gene regulation in gram-negative bacteria. Syst Appl Microbiol 1999; 22(4): 493–506

    Article  PubMed  CAS  Google Scholar 

  24. Riedel K, Hentzer M, Geisenberger O, et al. N-acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms. Microbiology 2001; 147(12): 3249–62

    PubMed  CAS  Google Scholar 

  25. Rasmussen TB, Manefield M, Andersen JB, et al. How Delisea pulchra furanones affect quorum sensing and swarming motility in Serratia liquefaciens MG1. Microbiology 2000; 146 (Pt 12): 3237–44

    PubMed  CAS  Google Scholar 

  26. Hartman G, Wise R. Quorum sensing: potential means of treating gram-negative infections? Lancet 1998; 351(9106): 848–9

    Article  PubMed  CAS  Google Scholar 

  27. Finch RG, Pritchard DI, Bycroft BW, et al. Quorum sensing: a novel target for anti-infective therapy. J Antimicrob Chemother 1998; 42(5): 569–71

    Article  PubMed  CAS  Google Scholar 

  28. Dong YH, Wang LH, Xu JL, et al. Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 2001 Jun 14; 411(6839): 813–7

    Article  PubMed  CAS  Google Scholar 

  29. Schaefer AL, Hanzelka BL, Eberhard A, et al. Quorum sensing in Vibrio fischeri: probing autoinducer-LuxR interactions with autoinducer analogs. J Bacteriol 1996; 178(10): 2897–901

    PubMed  CAS  Google Scholar 

  30. Chhabra SR, Stead P, Bainton NJ, et al. Autoregulation of carbapenem biosynthesis in Erwinia carotovora by analogues of N-(3-oxohexanoyl)-L-homoserine lactone. J Antibiot (Tokyo) 1993; 46(3): 441–54

    Article  CAS  Google Scholar 

  31. Passador L, Tucker KD, Guertin KR, et al. Functional analysis of the Pseudomonas aeruginosa autoinducer PAI. J Bacteriol 1996; 178(20): 5995–6000

    PubMed  CAS  Google Scholar 

  32. Zhu J, Beaber JW, More MI, et al. Analogs of the autoinducer 3-oxooctanoyl-homoserine lactone strongly inhibit activity of the TraR protein of Agrobacterium tumefaciens. J Bacteriol 1998; 180(20): 5398–405

    PubMed  CAS  Google Scholar 

  33. Kline T, Bowman J, Iglewski BH, et al. Novel synthetic analogs of the Pseudomonas autoinducer. Bioorg Med Chem Lett 1999; 9(24): 3447–52

    Article  PubMed  CAS  Google Scholar 

  34. Ikeda T, Kajiyama K, Kita T, et al. The synthesis of optically pure enantiomers of N-acyl-homoserine lactone autoinducers and their analogues. Chem Lett (Jpn) 2001; 314–315

  35. McClean KH, Winson MK, Fish L, et al. Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 1997; 143(12): 3703–11

    Article  PubMed  CAS  Google Scholar 

  36. Olsen JA, Severinsen R, Rasmussen TB, et al. Synthesis of new 3- and 4-substituted analogues of acyl homoserine lactone quorum-sensing autoinducers. Bioorg Med Chem Lett 2002 Feb 11; 12(3): 325–8

    Article  PubMed  CAS  Google Scholar 

  37. Joint I, Tait K, Callow ME, et al. Cell-to-cell communication across the prokaryote-eukaryote boundary. Science 2002; 298(5596): 1207

    Article  PubMed  Google Scholar 

  38. Teplitski M, Robinson JB, Bauer WD. Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol Plant Microbe Interact 2000; 13(6): 637–48

    Article  PubMed  CAS  Google Scholar 

  39. Cha C, Gao P, Chen YC, et al. Production of acyl-homoserine lactone quorum-sensing signals by Gram-negative plant-associated bacteria. Mol Plant Microbe Interact 1998; 11(11): 1119–29

    Article  PubMed  CAS  Google Scholar 

  40. Parsek MR, Greenberg EP. Acyl-homoserine lactone quorum sensing in Gram-negative bacteria: a signaling mechanism involved in associations with higher organisms. Proc Natl Acad Sci U S A 2000; 97(16): 8789–93

    Article  PubMed  CAS  Google Scholar 

  41. Pierson EA, Wood DW, Cannon JA, et al. Interpopulation signaling via N-acylhomoserine lactones among bacteria in the wheat rhizosphere. Mol Plant Microbe Interact 1998; 11: 1078–84

    Article  CAS  Google Scholar 

  42. Steidle A, Sigl K, Schuhegger R, et al. Visualization of N-acylhomoserine lactonemediated cell-cell communication between bacteria colonizing the tomato rhizosphere. Appl Environ Microbiol 2001; 67(12): 5761–70

    Article  PubMed  CAS  Google Scholar 

  43. Mathesius U, Mulders S, Gao M, et al. Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc Natl Acad Sci U S A 2003; 100(3): 1444–9

    Article  PubMed  CAS  Google Scholar 

  44. de Nys R, Wright AD, König GM, et al. New halogenated furanones from the marine alga Delisea pulchra. Tetrahedron 1993; 49(48): 11213–20

    Article  Google Scholar 

  45. de Nys R, Steinberg P, Rogers CN, et al. Quantitative variation of secondary metabolites in the sea hare Apylsia parvula and its host plant, Delisea pulchra. Mar Ecol Prog Ser 1996; 130: 135–46

    Article  CAS  Google Scholar 

  46. de Nys R, Steinberg PD, Willemsen P, et al. Broad spectrum effects of secondary metabolites from the red alga Delisea pulchra in antifouling assays. Biofouling 1995; 8: 259–71

    Article  Google Scholar 

  47. Reichelt JL, Borowitzka MA. Antimicrobial activity from marine algae: results of a large-scale screening programme. Hydrobiology 1984; 116/117: 158–68

    Article  Google Scholar 

  48. Rice SA, Givskov M, Steinberg P, et al. Bacterial signals and antagonists: the interaction between bacteria and higher organisms. J Mol Microbiol Biotechnol 1999; 1(1): 23–31

    PubMed  CAS  Google Scholar 

  49. Kjelleberg S, Steinberg PD, Givskov M, et al. Do marine natural products interfere with prokaryotic AHL regulatory systems? Aquat Microb Ecol 1997; 13(1): 85–93

    Article  Google Scholar 

  50. Givskov M, de Nys R, Manefield M, et al. Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J Bacteriol 1996; 178(22): 6618–22

    PubMed  CAS  Google Scholar 

  51. Manefield M, de Nys R, Kumar N, et al. Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. Microbiology 1999; 145: 283–91

    Article  PubMed  CAS  Google Scholar 

  52. Manefield M, Rasmussen TB, Henzter M, et al. Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiology 2002; 148 (Pt 4): 1119–27

    PubMed  CAS  Google Scholar 

  53. Manefield M, Harris L, Rice SA, et al. Inhibition of luminescence and virulence in the black tiger prawn (Penaeus monodon) pathogen Vibrio harveyi by intercellular signal antagonists. Appl Environ Microbiol 2000; 66(5): 2079–84

    Article  PubMed  CAS  Google Scholar 

  54. Manefield M, Welch M, Givskov M, et al. Halogenated furanones from the red alga, Delisea pulchra, inhibit carbapenem antibiotic synthesis and exoenzyme virulence factor production in the phytopathogen Erwinia carotovora. FEMS Microbiol Lett 2001; 205(1): 131–8

    Article  PubMed  CAS  Google Scholar 

  55. Gram L, Ravn L, Rasch M, et al. Food spoilage: interactions between food spoilage bacteria. Int J Food Microbiol 2002; 78(1-2): 79–97

    Article  PubMed  Google Scholar 

  56. Hjelmgaard T, Persson T, Rasmussen TB, et al. Synthesis of furanone-based natural product analogues with quorum sensing antagonist activity. Bioorg Med Chem 2003; 11(15): 3261–3271

    Article  PubMed  CAS  Google Scholar 

  57. Spoering AL, Lewis K. Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J Bacteriol 2001; 183(23): 6746–51

    Article  PubMed  CAS  Google Scholar 

  58. Wu H, Song Z, Hentzer M, et al. Detection of N-acylhomoserine lactones in lung tissues of mice infected with Pseudomonas aeruginosa. Microbiology 2000; 146(10): 2481–93

    PubMed  CAS  Google Scholar 

  59. Chhabra SR, Harty C, Hooi DS, et al. Synthetic analogues of the bacterial signal (quorum sensing) molecule N-(3-oxododecanoyl)-L-homoserine lactone as immune modulators. J Med Chem 2003; 46(1): 97–104

    Article  PubMed  CAS  Google Scholar 

  60. Di Mango E, Zar HJ, Bryan R, et al. Diverse Pseudomonas aeruginosa gene products stimulate respiratory epithelial cells to produce interleukin-8. J Clin Invest 1995; 96(5): 2204–10

    Article  Google Scholar 

  61. Telford G, Wheeler D, Williams P, et al. The Pseudomonas aeruginosa quorum-sensing signal molecule N-(3-oxododecanoyl)-L-homoserine lactone has immunomodulatory activity. Infect Immun 1998; 66(1): 36–42

    PubMed  CAS  Google Scholar 

  62. Lawrence RN, Dunn WR, Bycroft B, et al. The Pseudomonas aeruginosa quorumsensing signal molecule, N-(3-oxododecanoyl)-L-homoserine lactone, inhibits porcine arterial smooth muscle contraction. Br J Pharmacol 1999; 128(4): 845–8

    Article  PubMed  CAS  Google Scholar 

  63. Saleh A, Figarella C, Kammouni W, et al. Pseudomonas aeruginosa quorumsensing signal molecule N-(3-oxododecanoyl)-L-homoserine lactone inhibits expression of P2Y receptors in cystic fibrosis tracheal gland cells. Infect Immun 1999; 67(10): 5076–82

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Our work has received financial support from the Danish Technical Research Council, the Danish Medical Research Council, the Plasmid Foundation, the Villum Kann-Rasmussen Foundation, the Cystic Fibrosis Foundation Therapeutics, Inc. and the Mukoviszidose e.V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Givskov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hentzer, M., Eberl, L., Nielsen, J. et al. Quorum Sensing. BioDrugs 17, 241–250 (2003). https://doi.org/10.2165/00063030-200317040-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00063030-200317040-00003

Keywords

Navigation