Skip to main content

Quorum Sensing-Mediated Targeted Delivery of Antibiotics

  • Chapter
  • First Online:
Non-traditional Approaches to Combat Antimicrobial Drug Resistance

Abstract

Quorum sensing (QS) is an innate chemical mechanism many bacteria use to initiate group behavior. Among clinically relevant bacteria, it forms biofilms or produces virulence factors essential for establishing infection. Since bacteria produce small molecules that regulate quorum sensing, it is possible to develop chemical strategies to interfere with these signals and attenuate QS. Numerous QS inhibitors have also been developed to block different quorum sensing systems. Regardless of their potency, it is essential to note that QS inhibitors do not affect bacterial viability. Therefore, another strategy to kill the bacteria needs to be concomitantly utilized. An effective strategy could be the conjugation of the QS inhibitors with antibiotics to selectively deliver the antibiotics and at the same time disrupt the bacterial communication with minimal resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Allen VG, Mitterni L, Seah C, Rebbapragada A, Martin IE, Lee C, Siebert H, Towns L, Melano RG, Low DE. Neisseria gonorrhoeae treatment failure and susceptibility to cefixime in Toronto, Canada. JAMA. 2013;309:163–70.

    Article  CAS  Google Scholar 

  • Bartlett JG, Gilbert DN, Spellberg B. Seven ways to preserve the miracle of antibiotics. Clin Infect Dis. 2013;56:1445–50.

    Article  CAS  Google Scholar 

  • Bauer WD, Teplitski M. Can plants manipulate bacterial quorum sensing? Funct Plant Biol. 2001;28:913–21.

    Article  CAS  Google Scholar 

  • Bhardwaj AK, Vinothkumar K, Rajpara N. Bacterial quorum sensing inhibitors: attractive alternatives for control of infectious pathogens showing multiple drug resistance. Recent Pat Antiinfect Drug Discov. 2013;8:68–83.

    Article  CAS  Google Scholar 

  • Bi H, Christensen QH, Feng Y, Wang H, Cronan JE. The Burkholderia cenocepacia BDSF quorum sensing fatty acid is synthesized by a bifunctional crotonase homologue having both dehydratase and thioesterase activities. Mol Microbiol. 2012;83:840–55.

    Article  CAS  Google Scholar 

  • Biswas S, Brunel JM, Dubus JC, Reynaud-Gaubert M, Rolain JM. Colistin: an update on the antibiotic of the 21st century. Expert Rev Anti-Infect Ther. 2012;10:917–34.

    Article  CAS  Google Scholar 

  • Bobadilla Fazzini RA, Skindersoe ME, Bielecki P, Puchałka J, Givskov M, Martins dos Santos VA. Protoanemonin: a natural quorum sensing inhibitor that selectively activates iron starvation response. Environ Microbiol. 2013;15:111–20.

    Article  CAS  Google Scholar 

  • Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, Scheld M, Spellberg B, Bartlett J. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis. 2009;48(1-12):2009.

    Google Scholar 

  • Brown ED, Wright GD. Antibacterial drug discovery in the resistance era. Nature. 2016;52:336–43.

    Article  Google Scholar 

  • Calfee MW, Coleman JP, Pesci EC. Interference with Pseudomonas quinolone signal synthesis inhibits virulence factor expression by Pseudomonas aeruginosa. Proc Natl Acad Sci. 2001;98:11633–7.

    Article  CAS  Google Scholar 

  • Centers for Disease Control and Prevention (US). Antibiotic resistance threats in the United States, 2013. Centers for Disease Control and Prevention, US Department of Health and Human Services. 2013.

    Google Scholar 

  • Chambers HF, DeLeo FR. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol. 2009;7:629–41.

    Article  CAS  Google Scholar 

  • Chan YY, Bian HS, Tan TMC, Mattmann ME, Geske GD, Igarashi J, Hatano T, Suga H, Blackwell HE, Chua KL. Control of quorum sensing by a Burkholderia pseudomallei multidrug efflux pump. J Bacteriol. 2007;189:4320–4.

    Article  CAS  Google Scholar 

  • Chellat MF, Raguž L, Riedl R. Targeting antibiotic resistance. Angew Chem Int Ed. 2016;55:6600–26.

    Article  CAS  Google Scholar 

  • Chen X, Schauder S, Potier N, Van Dorsselaer A, Pelczer I, Bassler BL, Hughson FM. Structural identification of a bacterial quorum-sensing signal containing boron. Nature. 2002;415:545–9.

    Article  CAS  Google Scholar 

  • Chhabra SR, Stead P, Bainton NJ, Salmond GP, Stewart GS, Williams P, Bycroft BW. Autoregulation of carbapenem biosynthesis in Erwinia carotovora by analogues of N-(3-oxohexanoyl)-L-homoserine lactone. J Antibiot. 1993;46:441–54.

    Article  CAS  Google Scholar 

  • Chun CK, Ozer EA, Welsh MJ, Zabner J, Greenberg EP. Inactivation of a Pseudomonas aeruginosa quorum-sensing signal by human airway epithelia. Proc Natl Acad Sci U S A. 2004;101:3587–90.

    Article  CAS  Google Scholar 

  • Collignon P. Editorial commentary: resistant Escherichia coli—we are what we eat. Clin Infect Dis. 2009;49:202–4.

    Article  CAS  Google Scholar 

  • Dal Corso A, Cazzamalli S, Gébleux R, Mattarella M, Neri D. Protease-cleavable linkers modulate the anticancer activity of noninternalizing antibody–drug conjugates. Bioconjug Chem. 2017;28:1826–33.

    Article  CAS  Google Scholar 

  • Danial M, Postma A. Disulfide conjugation chemistry: a mixed blessing for therapeutic drug delivery? Ther Deliv. 2017;8:359–62.

    Article  CAS  Google Scholar 

  • Daniels R, De Vos DE, Desair J, Raedschelders G, Luyten E, Rosemeyer V, Verreth C, Schoeters E, Vanderleyden J, Michiels J. The cin quorum sensing locus of Rhizobium etli CNPAF512 affects growth and symbiotic nitrogen fixation. J Biol Chem. 2002;277:462–8.

    Article  CAS  Google Scholar 

  • Deng Y, Wu JE, Tao F, Zhang LH. Listening to a new language: DSF-based quorum sensing in Gram-negative bacteria. Chem Rev. 2010;111:160–73.

    Article  Google Scholar 

  • Dobretsov S, Teplitski M, Alagely A, Gunasekera SP, Paul VJ. Malyngolide from the cyanobacterium Lyngbya majuscula interferes with quorum sensing circuitry. Environ Microbiol Rep. 2010;2:739–44.

    Article  CAS  Google Scholar 

  • Dodds DR. Antibiotic resistance: a current epilogue. Biochem Pharmacol. 2017;134:139–46.

    Article  CAS  Google Scholar 

  • Dong YH, Wang LH, Xu JL, Zhang HB, Zhang XF, Zhang LH. Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature. 2001a;411:813–7.

    Article  CAS  Google Scholar 

  • Dong YH, Wang LH, Xu JL, Zhang HB, Zhang XF, Zhang LH. Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature. 2001b;411:813–7.

    Article  CAS  Google Scholar 

  • Dong YH, Xu JL, Li XZ, Zhang LH. AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc Natl Acad Sci. 2000;97:3526–31.

    Article  CAS  Google Scholar 

  • Dubern JF, Diggle SP. Quorum sensing by 2-alkyl-4-quinolones in Pseudomonas aeruginosa and other bacterial species. Mol BioSyst. 2008;4:882–8.

    Article  CAS  Google Scholar 

  • Dubois T, Faegri K, Perchat S, Lemy C, Buisson C, Nielsen-LeRoux C, Gohar M, Jacques P, Ramarao N, Kolstø AB, Lereclus D. Necrotrophism is a quorum-sensing-regulated lifestyle in Bacillus thuringiensis. PLoS Pathog. 2012;8:e1002629.

    Article  CAS  Google Scholar 

  • European Centre for Disease Prevention and Control (ECDC). Last-line antibiotics are failing. ScienceDaily. 18 November 2016.

    Google Scholar 

  • Evans K, Passador L, Srikumar R, Tsang E, Nezezon J, Poole K. Influence of the MexAB-OprM multidrug efflux system on quorum sensing in Pseudomonas aeruginosa. J Bacteriol. 1998;180:5443–7.

    Article  CAS  Google Scholar 

  • Fifer H, Natarajan U, Jones L, Alexander S, Hughes G, Golparian D, Unemo M. Failure of dual antimicrobial therapy in treatment of gonorrhea. N Engl J Med. 2016;374:2504–6.

    Article  Google Scholar 

  • Frieri M, Kumar K, Boutin A. Antibiotic resistance. J Infect Public Health. 2017;10:369–78.

    Article  Google Scholar 

  • Galloway WR, Hodgkinson JT, Bowden S, Welch M, Spring DR. Applications of small molecule activators and inhibitors of quorum sensing in Gram-negative bacteria. Trends Microbiol. 2012;20:449–58.

    Article  CAS  Google Scholar 

  • Ganin H, Tang X, Meijler MM. Inhibition of Pseudomonas aeruginosa quorum sensing by AI-2 analogs. Bioorg Med Chem Lett. 2009;19:3941–4.

    Article  CAS  Google Scholar 

  • Girennavar B, Cepeda ML, Soni KA, Vikram A, Jesudhasan P, Jayaprakasha GK, Pillai SD, Patil BS. Grapefruit juice and its furocoumarins inhibits autoinducer signaling and biofilm formation in bacteria. Int J Food Microbiol. 2008;125:204–8.

    Article  CAS  Google Scholar 

  • Givskov M, de Nys R, Manefield M, Gram L, Maximilien RIA, Eberl LEO, Molin S, Steinberg PD, Kjelleberg S. Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J Bacteriol. 1996;178:6618–22.

    Article  CAS  Google Scholar 

  • González JE, Keshavan ND. Messing with bacterial quorum sensing. Microbiol Mol Biol Rev. 2006;70:859–75.

    Article  Google Scholar 

  • Gorske BC, Blackwell HE. Interception of quorum sensing in Staphylococcus aureus: a new niche for peptidomimetics. Org Biomol Chem. 2006;4:1441–5.

    Article  Google Scholar 

  • Gould IM, Bal AM. New antibiotic agents in the pipeline and how they can help overcome microbial resistance. Virulence. 2013;4:185–91.

    Article  Google Scholar 

  • Guo M, Gamby S, Zheng Y, Sintim HO. Small molecule inhibitors of AI-2 signaling in bacteria: state-of-the-art and future perspectives for anti-quorum sensing agents. Int J Mol Sci. 2013;14:17694–728.

    Article  CAS  Google Scholar 

  • Havarstein LS, Coomaraswamy G, Morrison DA. An unmodified heptadecapeptide pheromone induces competence for genetic transformation in Streptococcus pneumoniae. Proc Natl Acad Sci. 1995;92:11140–4.

    Article  CAS  Google Scholar 

  • Hentzer M, Wu H, Andersen JB, Riedel K, Rasmussen TB, Bagge N, Kumar N, Schembri MA, Song Z, Kristoffersen P, Manefield M. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J. 2003;22:3803–15.

    Article  CAS  Google Scholar 

  • Ishida T, Ikeda T, Takiguchi N, Kuroda A, Ohtake H, Kato J. Inhibition of quorum sensing in Pseudomonas aeruginosa by N-acyl cyclopentylamides. Appl Environ Microbiol. 2007;73:3183–8.

    Article  CAS  Google Scholar 

  • Jimenez PN, Koch G, Thompson JA, Xavier KB, Cool RH, Quax WJ. The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiol Mol Biol Rev. 2012a;76:46–65.

    Article  CAS  Google Scholar 

  • Jimenez PN, Koch G, Thompson JA, Xavier KB, Cool RH, Quax WJ. The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiol Mol Biol Rev. 2012b;76:46–65.

    Article  CAS  Google Scholar 

  • Kalia VC. Quorum sensing inhibitors: an overview. Biotechnol Adv. 2013;31:224–45.

    Article  CAS  Google Scholar 

  • Kalia VC, Purohit HJ. Quenching the quorum sensing system: potential antibacterial drug targets. Crit Rev Microbiol. 2011;37:121–40.

    Article  CAS  Google Scholar 

  • Kendall MM, Sperandio V. Quorum sensing by enteric pathogens. Curr Opin Gastroenterol. 2007;23:10–5.

    Article  Google Scholar 

  • Khameneh B, Diab R, Ghazvini K, Bazzaz BSF. Breakthroughs in bacterial resistance mechanisms and the potential ways to combat them. Microb Pathog. 2016;95:32–42.

    Article  CAS  Google Scholar 

  • Kidd TJ, Mills G, Sá-Pessoa J, Dumigan A, Frank CG, Insua JL, Ingram R, Hobley L, Bengoechea JA. A Klebsiella pneumoniae antibiotic resistance mechanism that subdues host defences and promotes virulence. EMBO Mol Med. 2017;9:430–47.

    Article  CAS  Google Scholar 

  • Kim YH, Kim YH, Kim JS, Park S. Development of a sensitive bioassay method for quorum sensing inhibitor screening using a recombinant Agrobacterium tumefaciens. Biotechnol Bioprocess Eng. 2005;10:322.

    Article  CAS  Google Scholar 

  • Kjelleberg S, Steinberg P, Givskov M, Gram L, Manefield M, De Nys R. Do marine natural products interfere with prokaryotic AHL regulatory systems? Aquat Microb Ecol. 1997;13:85–93.

    Article  Google Scholar 

  • Koch B, Liljefors T, Persson T, Nielsen J, Kjelleberg S, Givskov M. The LuxR receptor: the sites of interaction with quorum-sensing signals and inhibitors. Microbiology. 2005a;151:3589–602.

    Article  CAS  Google Scholar 

  • Koch B, Liljefors T, Persson T, Nielsen J, Kjelleberg S, Givskov M. The LuxR receptor: the sites of interaction with quorum-sensing signals and inhibitors. Microbiology. 2005b;151:3589–602.

    Article  CAS  Google Scholar 

  • Koh CL, Sam CK, Yin WF, Tan LY, Krishnan T, Chong YM, Chan KG. Plant-derived natural products as sources of anti-quorum sensing compounds. Sensors. 2013;13:6217–28.

    Article  CAS  Google Scholar 

  • Kumar SG, Adithan C, Harish BN, Sujatha S, Roy G, Malini A. Antimicrobial resistance in India: a review. J Nat Sci Biol Med. 2013;4:286.

    Article  Google Scholar 

  • Kwan JC, Meickle T, Ladwa D, Teplitski M, Paul V, Luesch H. Lyngbyoic acid, a “tagged” fatty acid from a marine cyanobacterium, disrupts quorum sensing in Pseudomonas aeruginosa. Mol BioSyst. 2011;7:1205–16.

    Article  CAS  Google Scholar 

  • Kwan JC, Teplitski M, Gunasekera SP, Paul VJ, Luesch H. Isolation and biological evaluation of 8-epi-malyngamide C from the Floridian marine cyanobacterium Lyngbya majuscula. J Nat Prod. 2010;73:463–6.

    Article  CAS  Google Scholar 

  • LaSarre B, Federle MJ. Exploiting quorum sensing to confuse bacterial pathogens. Microbiol Mol Biol Rev. 2013;77:73–111.

    Article  CAS  Google Scholar 

  • Laxminarayan R, Duse A, Wattal C, Zaidi AK, Wertheim HF, Sumpradit N, Vlieghe E, Hara GL, Gould IM, Goossens H, Greko C. Antibiotic resistance—the need for global solutions. Lancet Infect Dis. 2013;13:1057–98.

    Article  Google Scholar 

  • Levin-Reisman I, Ronin I, Gefen O, Braniss I, Shoresh N, Balaban NQ. Antibiotic tolerance facilitates the evolution of resistance. Science. 2017;355:eaaj2191.

    Article  Google Scholar 

  • Lönn-Stensrud J, Landin MA, Benneche T, Petersen FC, Scheie AA. Furanones, potential agents for preventing Staphylococcus epidermidis biofilm infections? J Antimicrob Chemother. 2008;63:309–16.

    Article  Google Scholar 

  • Lowery CA, Abe T, Park J, Eubanks LM, Sawada D, Kaufmann GF, Janda KD. Revisiting AI-2 quorum sensing inhibitors: direct comparison of alkyl-DPD analogues and a natural product fimbrolide. J Am Chem Soc. 2009;131:15584–5.

    Article  CAS  Google Scholar 

  • Lowery CA, Park J, Kaufmann GF, Janda KD. An unexpected switch in the modulation of AI-2-based quorum sensing discovered through synthetic 4, 5-dihydroxy-2, 3-pentanedione analogues. J Am Chem Soc. 2008;130:9200–1.

    Article  CAS  Google Scholar 

  • Lyon GJ, Mayville P, Muir TW, Novick RP. Rational design of a global inhibitor of the virulence response in Staphylococcus aureus, based in part on localization of the site of inhibition to the receptor-histidine kinase, AgrC. Proc Natl Acad Sci. 2000;97:13330–5.

    Article  CAS  Google Scholar 

  • Manefield M, Rasmussen TB, Henzter M, Andersen JB, Steinberg P, Kjelleberg S, Givskov M. Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiology. 2002;148:1119–27.

    Article  CAS  Google Scholar 

  • Martinelli D, Grossmann G, Séquin U, Brandl H, Bachofen R. Effects of natural and chemically synthesized furanones on quorum sensing in Chromobacterium violaceum. BMC Microbiol. 2004;4:25.

    Article  Google Scholar 

  • Marwar A, Shaker IA, Palawan H. Extensively drug resistant tuberculosis (XDR-TB): a potential threat. J Basic Clin Pharm. 2010;2:27–32.

    Google Scholar 

  • Moreira CG, Weinshenker D, Sperandio V. QseC mediates Salmonella enterica serovar Typhimurium virulence in vitro and in vivo. Infect Immun. 2010;78:914–26.

    Article  CAS  Google Scholar 

  • Morohoshi T, Shiono T, Takidouchi K, Kato M, Kato N, Kato J, Ikeda T. Inhibition of quorum sensing in Serratia marcescens AS-1 by synthetic analogs of N-acylhomoserine lactone. Appl Environ Microbiol. 2007;73:6339–44.

    Article  CAS  Google Scholar 

  • Muh U, Schuster M, Heim R, Singh A, Olson ER, Greenberg EP. Novel Pseudomonas aeruginosa quorum-sensing inhibitors identified in an ultra-high-throughput screen. Antimicrob Agents Chemother. 2006;50:3674–9.

    Article  CAS  Google Scholar 

  • Nakayama J, Cao Y, Horii T, Sakuda S, Akkermans AD, De Vos WM, Nagasawa H. Gelatinase biosynthesis-activating pheromone: a peptide lactone that mediates a quorum sensing in Enterococcus faecalis. Mol Microbiol. 2001;41:145–54.

    Article  CAS  Google Scholar 

  • Nakayama J, Tanaka E, Kariyama R, Nagata K, Nishiguchi K, Mitsuhata R, Uemura Y, Tanokura M, Kumon H, Sonomoto K. Siamycin attenuates fsr quorum sensing mediated by a gelatinase biosynthesis-activating pheromone in Enterococcus faecalis. J Bacteriol. 2007;189:1358–65.

    Article  CAS  Google Scholar 

  • Neiditch MB, Federle MJ, Pompeani AJ, Kelly RC, Swem DL, Jeffrey PD, Bassler BL, Hughson FM. Ligand-induced asymmetry in histidine sensor kinase complex regulates quorum sensing. Cell. 2006;126:1095–108.

    Article  CAS  Google Scholar 

  • Nolting B. Linker technologies for antibody–drug conjugates. In: Antibody-drug conjugates. Totowa, NJ: Humana Press; 2013. p. 71–100.

    Google Scholar 

  • Parsek MR, Val DL, Hanzelka BL, Cronan JE, Greenberg EP. Acyl homoserine-lactone quorum-sensing signal generation. Proc Natl Acad Sci. 1999;96:4360–5.

    Article  CAS  Google Scholar 

  • Pearson JP, Van Delden C, Iglewski BH. Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J Bacteriol. 1999;181:1203–10.

    Article  CAS  Google Scholar 

  • Persson T, Hansen TH, Rasmussen TB, Skindersø ME, Givskov M, Nielsen J. Rational design and synthesis of new quorum-sensing inhibitors derived from acylated homoserine lactones and natural products from garlic. Org Biomol Chem. 2005a;3:253–62.

    Article  CAS  Google Scholar 

  • Persson T, Hansen TH, Rasmussen TB, Skinderso ME, Givskov M, Nielsen J. Rational design and synthesis of new quorum-sensing inhibitors derived from acylated homoserine lactones and natural products from garlic. Org Biomol Chem. 2005b;3:253–62.

    Article  CAS  Google Scholar 

  • Peterson MM, Mack JL, Hall PR, Alsup AA, Alexander SM, Sully EK, Sawires YS, Cheung AL, Otto M, Gresham HD. Apolipoprotein B is an innate barrier against invasive Staphylococcus aureus infection. Cell Host Microbe. 2008;4:555–66.

    Article  CAS  Google Scholar 

  • Piddock LJ. The crisis of no new antibiotics—what is the way forward? Lancet Infect Dis. 2012;12:249–53.

    Article  Google Scholar 

  • Prasad R. Multidrug and extensively drug resistant TB (M-XDR TB): problems and solutions. Indian J Tuberc. 2010;54:180–91.

    Google Scholar 

  • Raffa RB, Iannuzzo JR, Levine DR, Saeid KK, Schwartz RC, Sucic NT, Terleckyj OD, Young JM. Bacterial communication (“quorum sensing”) via ligands and receptors: a novel pharmacologic target for the design of antibiotic drugs. J Pharmacol Exp Ther. 2005;312:417–23.

    Article  CAS  Google Scholar 

  • Rasmussen TB, Givskov M. Quorum-sensing inhibitors as anti-pathogenic drugs. Int J Med Microbiol. 2006;296:149–61.

    Article  CAS  Google Scholar 

  • Rasmussen TB, Skindersoe ME, Bjarnsholt T, Phipps RK, Christensen KB, Jensen PO, Andersen JB, Koch B, Larsen TO, Hentzer M, Eberl L. Identity and effects of quorum-sensing inhibitors produced by Penicillium species. Microbiology. 2005;151:1325–40.

    Article  CAS  Google Scholar 

  • Ren D, Bedzyk LA, Ye RW, Thomas SM, Wood TK. Differential gene expression shows natural brominated furanones interfere with the autoinducer-2 bacterial signaling system of Escherichia coli. Biotechnol Bioeng. 2004;88:630–42.

    Article  CAS  Google Scholar 

  • Ren D, Zuo R, Barrios AFG, Bedzyk LA, Eldridge GR, Pasmore ME, Wood TK. Differential gene expression for investigation of Escherichia coli biofilm inhibition by plant extract ursolic acid. Appl Environ Microbiol. 2005;71:4022–34.

    Article  CAS  Google Scholar 

  • Reuter K, Steinbach A, Helms V. Interfering with bacterial quorum sensing. Perspect Medicin Chem. 2016;8:1–15.

    Article  Google Scholar 

  • Review on AMR (2014) Antimicrobial resistance: tackling a crisis for the health and wealth of nations.

    Google Scholar 

  • Rocha J, Flores V, Cabrera R, Soto-Guzmán A, Granados G, Juaristi E, Guarneros G, de la Torre M. Evolution and some functions of the NprR–NprRB quorum-sensing system in the Bacillus cereus group. Appl Microbiol Biotechnol. 2012;94:1069–78.

    Article  CAS  Google Scholar 

  • Rocha-Estrada J, Aceves-Diez AE, Guarneros G, de la Torre M. The RNPP family of quorum-sensing proteins in Gram-positive bacteria. Appl Microbiol Biotechnol. 2010;87:913–23.

    Article  CAS  Google Scholar 

  • Rolain JM, Abat C, Jimeno MT, Fournier PE, Raoult D. Do we need new antibiotics? Clin Microbiol Infect. 2016;22:408–15.

    Article  Google Scholar 

  • Rutherford ST, Bassler BL. Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med. 2012;2:a012427.

    Article  Google Scholar 

  • Salam AM, Quave CL. Targeting virulence in Staphylococcus aureus by chemical inhibition of the accessory gene regulator system in vivo. mSphere. 2018;3:e00500–17.

    Article  CAS  Google Scholar 

  • Schauder S, Shokat K, Surette MG, Bassler BL. The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Mol Microbiol. 2001;41:463–76.

    Article  CAS  Google Scholar 

  • Stephenson K, Yamaguchi Y, Hoch JA. The mechanism of action of inhibitors of bacterial two-component signal transduction systems. J Biol Chem. 2000;275:38900–4.

    Article  CAS  Google Scholar 

  • Subramoni S, Venturi V. LuxR-family ‘solos’: bachelor sensors/regulators of signalling molecules. Microbiology. 2009;155:1377–85.

    Article  CAS  Google Scholar 

  • Taga ME, Miller ST, Bassler BL. Lsr-mediated transport and processing of AI-2 in Salmonella typhimurium. Mol Microbiol. 2003;50:1411–27.

    Article  CAS  Google Scholar 

  • Teplitski M, Robinson JB, Bauer WD. Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol Plant-Microbe Interact. 2000;13:637–48.

    Article  CAS  Google Scholar 

  • Thoendel M, Kavanaugh JS, Flack CE, Horswill AR. Peptide signaling in the staphylococci. Chem Rev. 2010;111:117–51.

    Article  Google Scholar 

  • Tiaden A, Spirig T, Hilbi H. Bacterial gene regulation by α-hydroxyketone signaling. Trends Microbiol. 2010;18:288–97.

    Article  CAS  Google Scholar 

  • Tommasi R, Brown DG, Walkup GK, Manchester JI, Miller AA. ESKAPEing the labyrinth of antibacterial discovery. Nat Rev Drug Discov. 2015;14:529–42.

    Article  CAS  Google Scholar 

  • Tsunakawa M, Hu SL, Hoshino Y, Detlefson DJ, Hill SE, Furumai T, White RJ, Nishio M, Kawano K, Yamamoto S, Fukagawa Y. Siamycins I and II, new anti-HIV peptides: I. Fermentation, isolation, biological activity and initial characterization. J Antibiot. 1995;48:433–4.

    Article  CAS  Google Scholar 

  • Vandeputte OM, Kiendrebeogo M, Rajaonson S, Diallo B, Mol A, El Jaziri M, Baucher M. Identification of catechin as one of the flavonoids from Combretum albiflorum bark extract that reduces the production of quorum-sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Appl Environ Microbiol. 2010;76:243–53.

    Article  CAS  Google Scholar 

  • Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. P T. 2015;40:277–83.

    Google Scholar 

  • Vikram A, Jayaprakasha GK, Jesudhasan PR, Pillai SD, Patil BS. Suppression of bacterial cell–cell signalling, biofilm formation and type III secretion system by citrus flavonoids. J Appl Microbiol. 2010b;109:515–27.

    Article  CAS  Google Scholar 

  • Vikram A, Jesudhasan PR, Jayaprakasha GK, Pillai BS, Patil BS. Grapefruit bioactive limonoids modulate E. coli O157: H7 TTSS and biofilm. Int J Food Microbiol. 2010a;140:109–16.

    Article  CAS  Google Scholar 

  • Walker TS, Bais HP, Déziel E, Schweizer HP, Rahme LG, Fall R, Vivanco JM. Pseudomonas aeruginosa-plant root interactions. Pathogenicity, biofilm formation, and root exudation. Plant Physiol. 2004;134:320–31.

    Article  CAS  Google Scholar 

  • Wang LH, Weng LX, Dong YH, Zhang LH. Specificity and enzyme kinetics of the quorum-quenching N-acyl homoserine lactone lactonase (AHL-lactonase). J Biol Chem. 2004;279:13645–51.

    Article  CAS  Google Scholar 

  • Whiteley M, Diggle SP, Greenberg EP. Progress in and promise of bacterial quorum sensing research. Nature. 2017;551:313–20.

    Article  CAS  Google Scholar 

  • WHO antimicrobial resistance. Fact sheet accessed on 18th April 2018. http://www.who.int/mediacentre/factsheets/fs194/en/.

  • Wright JS, Jin R, Novick RP. Transient interference with staphylococcal quorum sensing blocks abscess formation. Proc Natl Acad Sci U S A. 2005;102:1691–6.

    Article  CAS  Google Scholar 

  • Wu H, Song Z, Hentzer M, Andersen JB, Molin S, Givskov M, Høiby N. Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice. J Antimicrob Chemother. 2004;53:1054–61.

    Article  CAS  Google Scholar 

  • Yates EA, Philipp B, Buckley C, Atkinson S, Chhabra SR, Sockett RE, Goldner M, Dessaux Y, Cámara M, Smith H, Williams P. N-acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infect Immun. 2002;70:5635–46.

    Article  CAS  Google Scholar 

  • Zaman SB, Hussain MA, Nye R, Mehta V, Mamun KT, Hossain N. A review on antibiotic resistance: alarm bells are ringing. Cureus. 2017;9:e1403.

    Google Scholar 

  • Zhu J, Beaber JW, Moré MI, Fuqua C, Eberhard A, Winans SC. Analogs of the autoinducer 3-oxooctanoyl-homoserine lactone strongly inhibit activity of the TraR protein of Agrobacterium tumefaciens. J Bacteriol. 1998;180:5398–405.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to the University of Jeddah, KSA, for providing online recourses and library facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohmmad Younus Wani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wani, M.Y., Malik, M.A., Rather, I.A. (2023). Quorum Sensing-Mediated Targeted Delivery of Antibiotics. In: Wani, M.Y., Ahmad, A. (eds) Non-traditional Approaches to Combat Antimicrobial Drug Resistance. Springer, Singapore. https://doi.org/10.1007/978-981-19-9167-7_10

Download citation

Publish with us

Policies and ethics