Skip to main content
Log in

Exercise-Induced Skeletal Muscle Growth Hypertrophy or Hyperplasia?

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Summary

Postnatal skeletal muscle growth in humans is generally ascribed to enlargement of existing muscle fibres rather than to cellular proliferation. Some evidence of muscle fibre division or splitting was provided in the nineteenth century. This evidence has more recently been supported by fibres obtained from regenerating muscle, and from muscle which has undergone stress-induced growth.

Numerous investigators have reported indirect evidence for exercise-induced hypertrophy and hyperplasia. These findings are largely founded on secondary observations of fibre size or number differences expressed relative to muscle cross-sectional area. Since these observations in humans are open to methodological criticism, researchers have developed 3 animal models to represent exercise-induced human muscle growth. These include compensatory hypertrophy, stretch-induced hypertrophy, and weight lifting in trained animals. The results and criticisms of the experiments which have used these models are discussed in this review.

In studies of muscle cross-sectional area, errors are created by fibres terminating intrafascicularly. Longitudinal growth of such fibres result in an overestimation of fibre number, and with the use of penniform muscles where fibres do not run parallel to the longitudinal axis of the muscle, the error is compounded. It was concluded that hyperplasia is not yet substantiated, and that new fibres, if present, may be the result of the development of satellite cells. Further experiments are required before a definitive answer can be provided. It is suggested that rigidly controlled exercise studies using contralateral control, fusiform muscles with analysis of individually teased muscle fibres be performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams RD. Pathological reactions of the muscle fibre in man. In Walton JN (Ed.) Disorders of voluntary muscle, Churchill-Livingstone, Edinburgh, 1974

    Google Scholar 

  • Armstrong RB, Marus P, Tullson P, Saubert CW. Acute hyper-trophic response of skeletal muscle to removal of synergist. Journal of Applied Physiology 46: 835–842, 1979

    PubMed  CAS  Google Scholar 

  • Ashmore CR, Lee YB, Sammers P, Hitchcock L. Stretch-induced growth in chicken wing muscles: nerve muscle interaction in muscular dystrophy. American Journal of Physiology 246: C378–C384, 1984

    PubMed  CAS  Google Scholar 

  • Asmussen G, Kiessling A. Hypertrophy and atrophy of mammalian extraocular muscle fibres following denervation. Experientia 32: 1186–1188, 1975

    Article  Google Scholar 

  • Baldwin KM, Valdez F, Herick RF, MacIntosh ZM, Roy RR. Biochemical properties of overloaded fast twitch skeletal muscle. Journal of Applied Physiology 52: 467–472, 1982

    PubMed  CAS  Google Scholar 

  • Blomstrand E, Ekblom B. The needle biopsy technique for fibre type determination in human skeletal muscle — a methodological study. Acta Physiologica Scandinavica 116 (4): 437–442, 1982

    Article  PubMed  CAS  Google Scholar 

  • Bradley WG. Muscle fibre splitting. In Mauro A (Ed.) Muscle regeneration, Raven Press, New York, 1979

    Google Scholar 

  • Burleigh IG. On the cellular regulation of growth and development in skeletal muscle. Biological Reviews 49: 267–320, 1974

    Article  PubMed  CAS  Google Scholar 

  • Colling-Saltin AS. Skeletal muscle development in the human fetus and during childhood. In Eriksson BO (Ed.) Proceedings of the IX International Congress on Pediatric Work Physiology, University Park Press, Baltimore, 1980

  • Csapo A, Erdos T, De Mattos CR, Gramss E, Moskowitz C. Stretch induced uterine growth, protein synthesis and function. Nature 207: 1378–1379, 1965

    Article  PubMed  CAS  Google Scholar 

  • Day RK, Ashmore GR, Lee YB. The effect of stretch removal on muscle weight and proteolytic enzyme activity in normal vs dystrophic chicken muscles. Muscle Nerve 7: 482–485, 1984

    Article  PubMed  CAS  Google Scholar 

  • Denny-Brown D. Experimental studies pertaining to hypertrophy, regeneration and degeneration. In Adams RD, Eaton LM, Sky AM (Eds) Proceedings of the association of research into nervous and mental disorders. Williams & Wilkins, Baltimore, 1960

  • Dons B, Bollerup KI, Bonde-Petersen F, Hancke S. The effect of weight-lifting exercise related to muscle fibre composition and muscle cross-sectional area in humans. European Journal of Applied Physiology 40: 95–106, 1979

    Article  CAS  Google Scholar 

  • Durante G. Anatomie pathologique des muscles pathologique. Felix Alcan, Paris, 1902

    Google Scholar 

  • Edgerton VA, Barnard RJ, Peter JB, Gillespie CA, Simpson DR. Overloaded skeletal muscles of a nonhuman primate (Galago senegalensis). Experimental Neurology 37: 322–339, 1972

    Article  PubMed  CAS  Google Scholar 

  • Edwards R, Young A, Wiles M. Needle biopsy of skeletal muscle in the diagnosis of myopathy and the clinical study of muscle function and repair. New England Journal of Medicine 302: 261–271, 1980

    Article  PubMed  CAS  Google Scholar 

  • Erb WH. Dystrophia muscularis progressive. Klinische and pathologische studien. Deutsche Zeitschrift für Nervenheilkunde 1: 173–261, 1891

    Article  Google Scholar 

  • Eulenberg A Von, Cohnheim R. Ergebnisse der anatomischen untersuchung eines falles von segenannter muskelhypertrophie. Verhandlungen Berlin Medizin Gesellschaaft 1: 191–210, 1866

    Google Scholar 

  • Goldberg AL, Etlinger JD, Goldspink DF, Jablecki C. Mechanism of work-induced hypertrophy of skeletal muscle. Medicine and Science in Sports 7: 248–251, 1975

    CAS  Google Scholar 

  • Goldspink DF. The influence of immobilisation and stretch on protein turnover of rat skeletal muscle. Journal of Physiology 264: 267–282, 1977

    PubMed  CAS  Google Scholar 

  • Goldspink G. Alterations in myofibril size and structure during growth, exercise and change in environmental temperature. In Handbook of Physiology, American Physiological Society, Bethesda, 10: 539–554, 1983

    Google Scholar 

  • Goldspink G. The proliferation of myofibrils during muscle fibre growth. Journal of Cell Science 6: 593–603, 1970

    PubMed  CAS  Google Scholar 

  • Goldspink G. Changes in striated muscle fibres to myofibril splitting. Journal of Cell Science 9: 123–137, 1971

    PubMed  CAS  Google Scholar 

  • Gollnick PD, Parsons D, Riedy M, Moore RL. Fibre number and size in overloaded chicken anterior latissimus dorsi muscle. Journal of Applied Physiology 54: 1292–1297, 1983

    PubMed  CAS  Google Scholar 

  • Gollnick PD, Timson BF, Moore FL, Riedy M. Muscular enlargement and numbers of fibres in skeletal muscles of rats. Journal of Applied Physiology 50: 936–943, 1981

    PubMed  CAS  Google Scholar 

  • Gonyea WJ. Role of exercise in inducing increases in skeletal muscle fibre numbers. Journal of Applied Physiology 48: 421–426, 1980a

    PubMed  CAS  Google Scholar 

  • Gonyea WJ. Muscle fibre splitting in trained and untrained animals. Exercise Sports Science Reviews 8: 19–39, 1980b

    CAS  Google Scholar 

  • Gonyea WJ, Bonde-Petersen F. Alterations in muscle contractile properties and fibre composition after weightlifting exercise in cats. Experimental Neurology 59: 75–84, 1978

    Article  PubMed  CAS  Google Scholar 

  • Gonyea WJ, Ericson GC. An experimental model for the study of exercise-induced skeletal muscle hypertrophy. Journal of Applied Physiology 40: 630–633, 1976

    PubMed  CAS  Google Scholar 

  • Gonyea W, Ericson GC, Bonde-Peterson F. Skeletal muscle fibre splitting induced by weight-lifting exercise in cats. Acta Physiologica Scandinavica 99: 105–109, 1977

    Article  PubMed  CAS  Google Scholar 

  • Gonyea WJ, Sale D. Physiology of weight-lifting exercise. Archives of Physical Medicine and Rehabilitation 63: 235–237, 1982

    PubMed  CAS  Google Scholar 

  • Green JH, Thomson JA, Daub WD, Houston ME, Ranney DA. Fibre composition, fibre size and enzyme activities in vastus lateralis of elite athletes involved in high intensity exercise. European Journal of Applied Physiology 41: 109–117, 1979

    Article  CAS  Google Scholar 

  • Guth L, Yellin H. The dynamic nature of the so-called ‘fibre-types’ of mammalian skeletal muscle. Experimental Neurology 31: 277–300, 1971

    Article  Google Scholar 

  • Haggmark T, Jansson E, Svane B. Cross-sectional area of the thigh muscle in man measured by computed tomography. Scandinavian Journal of Clinical and Laboratory Investigation 38: 355–360, 1978

    Article  PubMed  CAS  Google Scholar 

  • Hall-Craggs ECB. The longitudinal division of fibres in overloaded rat skeletal muscle. Journal of Anatomy 107: 459–470, 1970

    PubMed  CAS  Google Scholar 

  • Haase GR, Shy GM. Pathological changes in muscle biopsies from patients with peroneal muscular dystrophy. Brain 83: 631–637, 1960

    Article  PubMed  CAS  Google Scholar 

  • Ho KW, Roy RR, Tweedle CD, Heusner WW, Van Huss WD, et al. Skeletal muscle fibre splitting with weight-lifting exercise in rats. American Journal of Anatomy 157: 433–440, 1980

    Article  PubMed  CAS  Google Scholar 

  • Holly RG, Barnett JG, Ashmore CR, Taylor RG, Mole PA. Stretch-induced growth in chicken wing muscles: a new model of stretch hypertrophy. American Journal of Physiology 238: C62–C71, 1980

    PubMed  CAS  Google Scholar 

  • Howald H. Training-induced morphological and functional changes in skeletal muscle. International Journal of Sports Medicine 3: 1–12, 1982

    Article  PubMed  CAS  Google Scholar 

  • Hubbard RW, Ianuzzo CD, Matthew WT, Linduska JD. Compensatory adaptations of skeletal muscle composition to a long-term functional overload. Growth 39: 85–93, 1975

    PubMed  CAS  Google Scholar 

  • Ianuzzo CD, Chen V. Metabolic character of hypertrophied rat muscle. Journal of Applied Physiology 46: 738–742, 1979

    PubMed  CAS  Google Scholar 

  • Ianuzzo CD, Gollnick PD, Armstrong RB. Compensatory adaptations of skeletal muscle fibre types to a long-term functional overload. Life Sciences 19: 1517–1524, 1976

    Article  PubMed  CAS  Google Scholar 

  • Isaacs GR, Bradley WG, Henderson G. Longitudinal fibre splitting in muscular dystrophy: a serial cinematographic study. Journal of Neurology, Neurosurgery and Psychiatry 36: 813–819, 1973

    Article  CAS  Google Scholar 

  • James NT. Compensatory muscular hypertrophy in the extensor digitorum longus muscle of the mouse. Journal of Anatomy 122: 121–131, 1976

    PubMed  CAS  Google Scholar 

  • Lavoie JM, Taylor AW, Montpetit RR. Skeletal muscle fibre size adaptation to an eight week swimming program. European Journal of Applied Physiology 44: 161–165, 1980

    Article  CAS  Google Scholar 

  • Lexell J, Henriksson K, Sjostrom M. Distribution of different fibre types in human skeletal muscle. Acta Physiologica Scandinavica 117: 115–122, 1983

    Article  PubMed  CAS  Google Scholar 

  • MacCallum JB. On the histogenesis of the striated muscle fibre and growth of the human sartorius muscle. John Hopkins Hospital Bulletin 9: 208–215, 1898

    Google Scholar 

  • MacDougall JD, Sale DG, Alway SE, Sutton JR. Muscle fibre number in biceps brachii in bodybuilders and control subjects. Journal of Applied Physiology 57: 1399–1403, 1984

    PubMed  CAS  Google Scholar 

  • MacDougall JD, Sale DG, Elder GCB, Sutton JR. Muscle ultrastructural characteristics of elite powerlifters and bodybuilders. European Journal of Applied Physiology 48: 117–126, 1982

    Article  CAS  Google Scholar 

  • MacDougall JD, Sale DG, Moroz JR, Elder GCB, Sutton JR, et al. Mitochondrial volume density in human skeletal muscle following heavy resistance training. Medicine in Science and Sports 11: 164–166, 1979

    CAS  Google Scholar 

  • Mackova E, Hnik P. Compensatory muscle hypertrophy induced by tenotomy of synergists in not true working hypertrophy. Physiologica Bohemoslovaca 22: 43–49, 1973

    CAS  Google Scholar 

  • Morpurgo B. Uber aktivitatos-hypertrophie der willkurlichen musskeln. Virchows Archiv. A. Pathological Anatomy and Histology 150: 522–554, 1897

    Article  Google Scholar 

  • Newham DJ, McPhail G, Mills KR, Edwards RHT. Ultrastructural changes after concentric and eccentric contractions of human muscle. Journal of Neurological Science 61 (1): 109–122, 1983

    Article  CAS  Google Scholar 

  • Nonaka I, Sugita H, Takad K, Kumagai K. Muscle histochemistry in congenital muscular dystrophy with CNS involvement. Muscle Nerve 5: 102–106, 1982

    Article  PubMed  CAS  Google Scholar 

  • Nygaard E, Nielsen E. Skeletal muscle fiber capillarisation with extreme endurance training in man. In Eriksson B, Furberg B (Eds) Swimming Medicine IV, University Park Press, Baltimore, 1978

    Google Scholar 

  • Ontell M. The source of ‘new’ muscle fibers in neonatal muscle. In Mauro A (Ed.) Muscle regeneration, Raven Press, New York, 1979

    Google Scholar 

  • Pearce JMS, Harrimann DGF. Chronic spinal muscular atrophy. Journal of Neurology, Neurosurgery and Psychiatry 29: 509–520, 1966

    Article  Google Scholar 

  • Prince FP, Hikida RS, Hagermann FC. Human muscle fibre types in power lifters, distance runners and untrained subjects. Pflugers Archives 363: 19–26, 1976

    Article  CAS  Google Scholar 

  • Rayne J, Crawford GNC. Increase in fibre numbers of the rat pterygoid muscles during postnatal growth. Journal of Anatomy 119: 347–357, 1975

    PubMed  CAS  Google Scholar 

  • Reitsma W. Skeletal muscle hypertrophy after heavy exercise in rats with surgically reduced muscle function. American Journal of Physical Medicine 48: 237–258, 1969

    PubMed  CAS  Google Scholar 

  • Reitsma W. Some structural changes in skeletal muscles of the rat after intensive training. Acta Morphologica Neerlando-Scandinavica 7: 229–245, 1970

    PubMed  CAS  Google Scholar 

  • Riedel B. Das postembryonale wachstum der weichtheile. A Muskeln. Untersuchungen aus dem anatomischen Institutu zu Rostock, 74–83, 1874

    Google Scholar 

  • Roy RR, Meadows ID, Baldwin KM, Edgerton VR. Functional significance of compensatory overloaded rat fast muscle. Journal of Applied Physiology 52: 473–482, 1982

    PubMed  CAS  Google Scholar 

  • Salleo A, Anastasi G, LaSpada G, Falzea G, Denaro MG. New muscle fibre production during compensatory hypertrophy. Medicine and Science in Sports and Exercise 12: 268–273, 1980

    PubMed  CAS  Google Scholar 

  • Saltin B, Gollnick PD. Skeletal muscle adaptability: significance for metabolism and performance. In Handbook of Physiology, American Physiological Society, 1983

    Google Scholar 

  • Schantz P, Randall-Fox E, Hutchison W, Tyden A, Astrand PO. Muscle fiber type distribution, muscle cross-sectional area, and maximal voluntary strength in humans. Acta Physiologica Scandinavica 117: 219–226, 1983

    Article  PubMed  CAS  Google Scholar 

  • Schantz P, Randall FE, Norgren P, Tyden A. The relationship between the mean muscle fibre area and the muscle cross-sectional area of the thigh in subjects with large differences in thigh girth. Acta Physiologica Scandinavica 113: 537–539, 1981

    Article  PubMed  CAS  Google Scholar 

  • Schiaffino S. Hypertrophy of skeletal muscle induced by tendon shortening. Experientia 30: 1163–1164, 1974

    Article  PubMed  CAS  Google Scholar 

  • Schiaffino S, Bormiou SP, Aloisi M. Fibre branching and formation of new fibres during compensatory muscle hypertrophy. In Mauro A (Ed.) Muscle regeneration, Raven Press, New York, 1979

    Google Scholar 

  • Schmalbruch H. Manifestation of regeneration in myopathic muscles. In Mauro A (Ed.) Muscle regeneration, Raven Press, New York, 1979

    Google Scholar 

  • Seiden D. A quantitative analysis of muscle cell changes in compensatory hypertrophy and work-induced hypertrophy. American Journal of Anatomy 145: 459–468, 1976

    Article  PubMed  CAS  Google Scholar 

  • Silbermann M, Finkelbrand S, Weiss A, Gersin D, Reznick A. Morphometric analysis of aging skeletal muscle following endurance training. Muscle and Nerve 6: 136–142, 1983

    Article  PubMed  CAS  Google Scholar 

  • Sola OM, Christensen DL, Martin AW. Hypertrophy and hyper-plasia in adult chicken anterior latissimus dorsi muscles following stretch with and without denervation. Experimental Neurology 41: 76–100, 1973

    Article  PubMed  CAS  Google Scholar 

  • Stickland NC. Muscle development in the human fetus as exemplified by M. Sartorius: a quantitative study. Journal of Anatomy 132: 557–579, 1981

    PubMed  CAS  Google Scholar 

  • Swatland JH. Effect of growth and plane of nutrition on apparent muscle fibre numbers in the pig. Growth 40: 285–292, 1976

    PubMed  CAS  Google Scholar 

  • Tesch PA, Larsson L. Muscle hypertrophy in body-builders. European Journal of Applied Physiology 49: 301–306, 1982

    Article  CAS  Google Scholar 

  • Thorstensson A. Muscle strength, fibre types, and enzyme activities in man. Acta Physiologica Scandinavica 443 (Suppl.): 1–44, 1976

    CAS  Google Scholar 

  • Vandenburgh HH, Kaufman S. In vitro skeletal muscle hypertrophy and Na+ pump activity. In Pette D (Ed.) Plasticity of muscle, Walter de Gruyter, Berlin, 1980

    Google Scholar 

  • Van Linge B. The response of muscle to strenuous exercise. Journal of Bone and Joint Surgery 44B: 711–721, 1962

    Google Scholar 

  • Vaughan HS, Goldspink G. Fibre number and fibre size in a surgically overloaded muscle. Journal of Anatomy 129: 293–303, 1979

    PubMed  CAS  Google Scholar 

  • Williams PE, Goldspink G. The effects of denervation and dys-trophy on the adaptation of sarcomere number to the functional length of muscle in young and adult mice. Journal of Anatomy 122: 455–465, 1976

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, N.A.S., Wilkinson, J.G. Exercise-Induced Skeletal Muscle Growth Hypertrophy or Hyperplasia?. Sports Medicine 3, 190–200 (1986). https://doi.org/10.2165/00007256-198603030-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-198603030-00003

Keywords

Navigation