Skip to main content

Muscle Physiology in Athletes

  • Chapter
  • First Online:
Muscle Injuries in Sport Athletes

Part of the book series: Sports and Traumatology ((SPORTS))

Abstract

Skeletal muscle exhibits plasticity in response to physical training. The functional consequences of these adaptations are determined by training volume, intensity and frequency. One could oppose the practice of endurance sports to sports involving strength and speed. Endurance exercise leads to physiological and biochemical adaptations in skeletal muscle which sustain aerobic metabolism capacity such as mitochondrial biogenesis, angiogenesis, and fiber type transformation. Strength training stimulates synthesis of contractile proteins that are responsible for muscle hypertrophy and increased maximal contractile force output. The increase in muscle mass observed in response to strength training is related to hypertrophy of cellular components, with an increase in their number referred to as hyperplasia. These adaptive changes are responsible for the improvement of physical performance. This review focuses on the mechanisms involved in these adaptations. Modifications of muscle typology under the effect of training result from three main factors: nerve stimulation, mechanical stress resulting from the type of physical activity, and the metabolic response to effort. Beside these main factors of muscle adaptation, hormonal response and nutrition can modulate their expression. Recent findings have revealed some of the mechanisms of various signal transduction pathways and gene expression programs in exercise-induced skeletal muscle adaptations. It is now possible to study the effects of various training interventions on a variety of signaling proteins and early-response genes in skeletal muscle. A practical question is whether it is possible to relate muscle structural and functional capacities to performance. Physiological and possibly pathological structural modifications are appreciated through the various imaging techniques, such as dual energy X-ray absorptiometry (DEXA), radiography and computed tomography, magnetic resonance imaging and ultrasound, all of which have been applied to the study of how changes in muscle mass are effected by training. Measuring cross-sectional surface area by means of ultrasound helps evaluate with precision the increase in segmental cross-sectional surface area. A non-invasive measurement of the effects of training on muscle typology can be realized using magnetic resonance spectrometry, 31P-MRS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aagaard P, Andersen JL, Dyhre-Poulsen P, Leffers AM, Wagner A, Magnusson SP, Halkjaer-Kristensen J, Simonsen EB. A mechanism for increased contractile strength of human pennate muscle in response to strength training: changes in muscle architecture. J Physiol. 2011;15(534):613–23.

    Google Scholar 

  2. Abe T, Dehoyos DV, Pollock ML, Garzarella L. Time course for strength and muscle thickness changes following upper and lower body resistance training in men and women. Eur J Appl Physiol. 2000;81:174–80.

    Article  CAS  PubMed  Google Scholar 

  3. Abe T, Kojima K, Kearns CF, Yohena H, Fukuda J. Whole body muscle hypertrophy from resistance training: distribution and total mass. Br J Sports Med. 2003;37:543–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Aoi W, Naito Y, Takanami Y, Kawai Y, Sakuma K, Ichikawa H, Yoshida N, Yoshikawa T. Oxidative stress and delayed-onset muscle damage after exercise. Free Radic Biol Med. 2004;37:480–7.

    Article  CAS  PubMed  Google Scholar 

  5. Bemben MG. Use of diagnostic ultrasound for assessing muscle size. J Strength Cond Res. 2002;16:103–8.

    PubMed  Google Scholar 

  6. Bergeron R, Ren JM, Cadman KS. Chronic activation of AMPk results in NRF-1 activation and mitochondrial biogenesis. Am J Physiol Endocrinol Metab. 2001;281:340–6.

    Google Scholar 

  7. Bescos R, Sureda A, Tur JA, Pons A. The effect of Nitric-Oxid related supplements on human performance. Sports Med. 2012;42:99–117.

    Article  PubMed  Google Scholar 

  8. Bhasin S, Storer TW, Berman N. The effect of supraphysiological doses of testosterone on muscle size and strength in normal men. N Engl J Med. 1996;335:1–7.

    Article  CAS  PubMed  Google Scholar 

  9. Bigard AX, Koulmann N. Structural and biochemical adaptive responses of skeletal muscle to strength training. Science et Sports. 2006;21:50–6.

    Article  Google Scholar 

  10. Booth FW, Watson PA. Control of adaptations in protein levels in response to exercise. Fed Proc. 1985;44:2293–300.

    CAS  PubMed  Google Scholar 

  11. Bouchard C, Dionne FT, Simonneau JA. Genetics of aerobic and anaerobic performances. Exerc Sport Sci Rev. 1992;20:27–58.

    Article  CAS  PubMed  Google Scholar 

  12. Chilibeck PD, Syrotuik DG, Bell GJ. The effect of strength training on estimates of mitochondrial density and distribution throughout muscle fibers. Eur J Appl Physiol. 1999;80:604–9.

    Article  CAS  Google Scholar 

  13. Di Meo S, Venditti P. Mitochondria in exercise-induced oxidative stress. Biol Signals Recept. 2001;10:125–40.

    Article  CAS  PubMed  Google Scholar 

  14. Dreyer HC, Fujita S, Cadenas JG, Chinkes DL, Volpi H, Rasmunsen BB. Resistance exercise increases AMPK activity and reduces 4E-BP1 phosphorylation and protein synthesis in human skeletal muscle. J Physiol. 2006;27:45–50.

    Google Scholar 

  15. Duguez S, Bihan MC, Gouttefangeas D, Feasson L, Freyssenet D. Myogenic and nonmyogenic cells differentially express proteinases, Hsc/Hsp70, and BAG-1 during skeletal muscle regeneration. Am J Physiol Endocrinol Metab. 2003;285:E206–15.

    Article  CAS  PubMed  Google Scholar 

  16. Eynon N, Hanson ED, Lucia A, Houweling PJ, Garton F, North KN, Bishop DJ. Genes for elite power and sprint performance: ACTN3 leads the way. Sports Med. 2013;43(9):803–17.

    Article  PubMed  Google Scholar 

  17. Falvo MJ, Sirevaag EJ, Rohrbaugh JW, Earhart GM. Resistance training induces supraspinal adaptations: evidence from movement-related cortical potentials. Eur J Appl Physiol. 2010;109(5):923–33.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fluck M, Hoppeler H. Molecular basis of skeletal muscle plasticity from genes to form and function. Rev Physiol Biochem Pharmacol. 2003;146:159–216.

    Article  CAS  PubMed  Google Scholar 

  19. Folland JP, Williams AG. The adaptations to strength training: morphological and neurological contributions to increased strength. Sports Med. 2007;37(2):145–68.

    Article  PubMed  Google Scholar 

  20. Gabriel DA, Kamen G, Frost G. Neural adaptations to resistive exercise: mechanisms and recommendations for training practices. Sports Med. 2006;36(2):133–49.

    Article  PubMed  Google Scholar 

  21. Goetsch KP, Myburgh KH, Niesler CU. In vitro myoblast motility models: investigating migration dynamics for the study of skeletal muscle repair. J Muscle Res Cell Motil. 2013;34(5–6):333–47. doi:10.1007/s10974-013-9364-7. Epub 2013 Oct 23

    Article  CAS  PubMed  Google Scholar 

  22. Henneman E, Somjen G, Carpenter DO. Functional significance of cell size in spinal motoneurons. J Neurophysiol. 1965;28:560–80.

    CAS  PubMed  Google Scholar 

  23. Hoff E, Brechtel L, Strube P, Konstanczak P, Stoltenburg-Didinger G, Perka C, Putzier M. Noninvasive monitoring of training induced muscle adaptation with 31P-MRS: fiber type shifts correlate with metabolic changes. Biomed Res Int. 2013;2013:417901. doi:10.1155.

    Google Scholar 

  24. Hoppeler H, Howald H, Conley K, Lindstedt S, Classen H, Vock P, Weibel E. Endurance training in humans: aerobic capacity and structure of skeletal muscle. J Appl Physiol. 1985;59:320–7.

    CAS  PubMed  Google Scholar 

  25. Hoyle G. Muscle and their neural control. New York: Wiley; 1983.

    Google Scholar 

  26. Jeppesen J, Jordy AB, Sjøberg KA, Füllekrug J, Stahl A, Nybo L, Kiens B. Enhanced fatty acid oxidation and FATP4 protein expression after endurance exercise training in human skeletal muscle. PLoS One. 2012;7(1):29–39.

    Article  Google Scholar 

  27. Jones EJ, Bishop PA, Woods AK, Green JM. Cross-sectional area and muscular strength: a brief review. Sports Med. 2008;38(12):987–94.

    Article  PubMed  Google Scholar 

  28. Kadi F, Thomell LE. Concomittant increase in myonuclear and satellite cell content in female trapezius muscle following strength training. Histochem Cell Biol. 2000;113:99–103.

    Article  CAS  PubMed  Google Scholar 

  29. Kawakami Y, Abe T, Fukunaga T. Muscle-fiber pennation angles are greater in hypertrophied than in normal muscles. J Appl Physiol. 1993;74:2740–4.

    CAS  PubMed  Google Scholar 

  30. Koulman N, Bigard AX. Interaction between signaling pathways involved in skeletal muscle responses to endurance exercise. Pflugers Arch. 2006;452(2):125–39.

    Article  Google Scholar 

  31. Kraemer RR, Kilgore JL, Kraemer GR, Castracane VD. Growth hormone, IGF-1 and testosterone response to resistive exercise. Med Sci Sports Exerc. 1992;24:1346–52.

    Article  CAS  PubMed  Google Scholar 

  32. Lehman W, Craig R, Vibert P. Ca2-induced tropomyosin movement in limulus thin filaments revealed by three dimensional reconstruction. Nature. 1994;368:65–7.

    Article  CAS  PubMed  Google Scholar 

  33. Kumagai K, Abe T, Brechue WF, Ryushi T, Takano S, Mizuno M. Sprint performance is related to muscle fascicle length in male 100-m sprinters. J Appl Physiol. 2000;88:811–6.

    CAS  PubMed  Google Scholar 

  34. McPheron A, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF superfamily member. Nature. 1997;387:83–90.

    Article  Google Scholar 

  35. Moritani T. Neuromuscular adaptations during the acquisition of muscle strength, power and motor tasks. J Biomech. 1993;26:95–107.

    Article  PubMed  Google Scholar 

  36. Nelson ME, Fiatarone MA, Layne JE, Trice I, Economos CD, Fielding RA, Ma R, Pierson RN, Evans WJ. Analysis of body-composition techniques and models for detecting change in soft tissue with strength training. Am J Clin Nutr. 1996;63(5):678–86.

    CAS  PubMed  Google Scholar 

  37. Puthucheary Z, Skipworth JR, Rawal J, Loosemore M, Van Someren K, Montgomery HE. Genetic influences in sport and physical performance. Sports Med. 2011;41(10):845–59.

    Article  PubMed  Google Scholar 

  38. Rao A, Luo C, Hogan PG. Transcription factors of the NFAT family regulation and function. Annu Rev Immunol. 1997;15:707–47.

    Article  CAS  PubMed  Google Scholar 

  39. Rankinen T, Wolfarth B, Simoneau JA. No association between the angiotensin-converting enzyme ID polymorphism and elite endurance athlete status. J Appl Physiol. 2000;88:1571–5.

    CAS  PubMed  Google Scholar 

  40. Relaix F, Zammit PS. Satellite cells are essential for skeletal muscle regeneration: the cell on the edge returns center stage. Development. 2012;139(16):2845–56.

    Article  CAS  PubMed  Google Scholar 

  41. Schiaffino S, Reggiani C. Fiber types in mammalian skeletal muscles. Physiol Rev. 2001;91(4):1447–531.

    Article  Google Scholar 

  42. Seene T, Kaasik P, Umnova M. Structural rearrangements in contractile apparatus and resulting skeletal muscle remodelling: effect of exercise training. J Sports Med Phys Fitness. 2009;49:410–23.

    CAS  PubMed  Google Scholar 

  43. Seene T, Kaasik P, Alev K. Muscle protein turnover in endurance training: a review. Int J Sports Med. 2011;32(12):905–11.

    Article  CAS  PubMed  Google Scholar 

  44. Semenza GL. Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol. 1999;15:551–78.

    Article  CAS  PubMed  Google Scholar 

  45. Siu PM, Donley DA, Bryner RW, Always SE. Myogenin and oxidative enzyme gene expression levels are elevated in rat soleus muscle after endurance training. J Appl Physiol. 2004;97:277–85.

    CAS  PubMed  Google Scholar 

  46. Sonnenblick EH, Skelton CL. Reconsideration of the ultrastructural basis of cardiac length-tension relations. Circ Res. 1974;35(4):517–26.

    Article  CAS  PubMed  Google Scholar 

  47. Suter E, Herzog W, Sokolosky J, Wiley JP, Macintosh BR. Muscle fiber type distribution as estimated by Cybex testing and by muscle biopsy. Med Sci Sports Exerc. 1993;25(3):363–70.

    Article  CAS  PubMed  Google Scholar 

  48. Taillandier D, Aurousseau E, Combert L, Guezennec CY, Attaix D. Regulation of proteolysis during reloading of the unweighted soleus muscle. Int J Biochem Cell Biol. 2003;35:665–75.

    Article  CAS  PubMed  Google Scholar 

  49. Tarnopolsky MA, MacDougall JD, Atkinson SA. Influence of protein intake and training status on nitrogen balance and lean body mass. J Appl Physiol. 1988;64:187–93.

    CAS  PubMed  Google Scholar 

  50. Tillin NA, Pain MT, Folland JP. Short-term training for explosive strength causes neural and mechanical adaptations. Exp Physiol. 2012;97(5):630–41.

    Article  PubMed  Google Scholar 

  51. Verdijk LB, Snijders T, Drost M, Delhaas T, Kadi F, van Loon LJ. Satellite cells in human skeletal muscle; from birth to old age. Age (Dordr). 2014;36(2):545–7.

    Article  CAS  Google Scholar 

  52. Wideman L, Weltman JY, Hartman ML, Veldhuis JD, Weltman A. Growth hormone release during acute and chronic aerobic and resistance exercise: recent finding. Sports Med. 2002;32:987–1004.

    Article  PubMed  Google Scholar 

  53. Wolbarsht ML, Fridovich I. Hyperoxia during reperfusion is a factor in reperfusion injury. Free Radic Biol Med. 1989;6:61–2.

    Article  CAS  PubMed  Google Scholar 

  54. Yan Z, Okutsu M, Akhtar YN, Lira VA. Regulation of exercise-induced fiber type transformation, mitochondrial biogenesis, and angiogenesis in skeletal muscle. J Appl Physiol. 2011;110:264–74.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles-Yannick Guezennec MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Guezennec, CY., Krzentowski, R. (2017). Muscle Physiology in Athletes. In: Roger, B., Guermazi, A., Skaf, A. (eds) Muscle Injuries in Sport Athletes. Sports and Traumatology. Springer, Cham. https://doi.org/10.1007/978-3-319-43344-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43344-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43342-4

  • Online ISBN: 978-3-319-43344-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics