Skip to main content
Log in

Memantine Pharmacotherapy

A Naturalistic Study Using a Population Pharmacokinetic Approach

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and objective

Memantine plasma concentrations show considerable interindividual variability. High memantine plasma concentrations are associated with the occurrence of neuropsychiatric adverse effects such as confusion. The objective of the present study was, therefore, to investigate the reasons for the observed variability of the pharmacokinetics of memantine in a representative patient population and to explore patient covariates on drug disposition.

Subjects

Fifty-six ambulatory Western European patients aged 50–91 years.

Methods

This prospective study used a full population pharmacokinetic sampling design. After at least 11 days of continuous memantine intake, the patients provided pharmacokinetic profiles, with six measurements each over a 12-hour period, with a total of 335 serum memantine concentrations. Covariates considered for inclusion in the models were: subject demographic factors (age, total body weight, gender), laboratory tests (urinary pH), total daily dose of memantine, memantine formulation type, comedication eliminated via tubular secretion and smoking history. The model development was conducted in three sequential steps. First, an adequate basic structural model was chosen (e.g. a one-, two- or three-compartment pharmacokinetic model). The data were analysed to estimate population pharmacokinetic parameters with the nonlinear mixed-effects model computer program NONMEM. Second, the effects of covariates were investigated on post hoc estimates using multivariate statistics. Third, the covariates with significant effects in the second step were used to build a final covariate pharmacokinetic model, again using NONMEM.

Results

A two-compartment model with first-order absorption satisfactorily described memantine pharmacokinetics. In the final regression model, total bodyweight, memantine formulation type (solution vs tablets) and concomitant medication eliminated via tubular secretion were all important determinants of the apparent clearance (CL/F). The final regression model was: CL/F (L/h) = (1.92 + 0.048 · BW [kg]) · 0.53QFRM · 0.769CMD where FRM = 1 for patients receiving memantine solution, otherwise FRM = 0; CMD = 1 for patients receiving a comedication eliminated via tubular secretion, otherwise CMD = 0; and BW is bodyweight. Compared with the basic model, the final population pharmacokinetic model explained 61% of the interindividual variance of the apparent clearance.

Conclusions

The population pharmacokinetic model that was developed identified a set of sources of variability in the apparent clearance of memantine, which can be used as a reference in order to optimise memantine therapy in Western European patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Fig. 2
Fig. 3
Table II
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. Komhuber J, Weiler M, Schoppmeyer K, et al. Amantadine and memantine are NMDA receptor antagonists with neuroprotective properties. J Neural Transm Suppl 1994; 43: 91–104

    Google Scholar 

  2. Möbius HJ, Stöffler A, Graham SM. Memantine hydrochloride: pharmacological and clinical profile. Drugs Today (Barc) 2004; 40(8): 685–95

    Article  Google Scholar 

  3. Kornhuber J, Bormann J, Retz W, et al. Memantine displaces [3H]MK-801 at therapeutic concentrations in postmortem human frontal cortex. Eur J Pharmacol 1989; 166: 589–90

    Article  PubMed  CAS  Google Scholar 

  4. Bormann J. Memantine is a potent blocker of N-methyl-D-aspartate (NMDA) receptor channels. Eur J Pharmacol 1989; 166: 591–2

    Article  PubMed  CAS  Google Scholar 

  5. Kornhuber J, Bormann J, Hübers M, et al. Effects of the 1-amino-adamantanes at the MK-801-binding site of the NMDA-receptor-gated ion channel: a human postmortem brain study. Eur J Pharmacol Mol Pharmacol Sect 1991; 206: 297–300

    Article  CAS  Google Scholar 

  6. Kornhuber J, Quack G. Cerebrospinal fluid and serum concentrations of the N-methyl-D-aspartate (NMDA) receptor antagonist memantine in man. Neurosci Lett 1995; 195: 137–9

    Article  PubMed  CAS  Google Scholar 

  7. European Medicines Agency (EMEA). EPARs for authorised medicinal products for human use: Axura. European public assessment report [online]. Available from URL: http://www.emea.europa.eu/humandocs/Humans/EPAR/axura/axura.htm [Accessed 2007 May 18]

  8. European Medicines Agency (EMEA). Initial scientific discussion for the approval of Axura [online]. Available from URL: http://www.emea.europa.eu/humandocs/PDFs/EPAR/axura/094802en6.pdf [Accessed 2007 May 18]

  9. Freudenthaler S, Görtelmeyer R, Pantev M, et al. Dose-response analysis to support dosage recommendations for memantine. Naunyn-Schmiedebergs Arch Pharmacol 1996; 353 Suppl.: R159

    Google Scholar 

  10. Periclou A, Ventura D, Rao N, et al. Pharmacokinetic study of memantine in healthy and renally impaired subjects. Clin Pharmacol Ther 2006; 79(1): 134–43

    Article  PubMed  CAS  Google Scholar 

  11. Wesemann W, Sontag K-H, Maj J. Zur Pharmakodynamik und Pharmakokinetik des Memantin. Arzneimittelforschung/Drug Res 1983; 33: 1122–34

    CAS  Google Scholar 

  12. Freudenthaler S, Meineke I, Schreeb KH, et al. Influence of urine pH and urinary flow on the renal excretion of memantine. Br J Clin Pharmacol 1998; 46(6): 541–6

    Article  PubMed  CAS  Google Scholar 

  13. Henkel JG, Hane JT. Structure-anti-Parkinson activity relationships in the aminoadamantanes: influence of bridgehead substitution. J Med Chem 1982; 25: 51–6

    Article  PubMed  CAS  Google Scholar 

  14. Micuda S, Mundlova L, Anzenbacherova E, et al. Inhibitory effects of memantine on human cytochrome P450 activities: prediction of in vivo drug interactions. Eur J Clin Pharmacol 2004; 60: 583–9

    Article  PubMed  CAS  Google Scholar 

  15. Aarons L. Population pharmacokinetics: theory and practice. Br J Clin Pharmacol 1991; 32: 669–70

    PubMed  CAS  Google Scholar 

  16. Beal SL, Sheiner LB. NONMEM users guides, NONMEM Project Group, San Francisco. San Francisco (CA): University of California, 1992

    Google Scholar 

  17. Fachinfo-Service. Fachinformationsverzeichnis Deutschland, RoteListe Service GmbH — Frankfurt/Main [online]. Available from URL: http://www.fachinfo.de [Accessed 2006 Jan 15]

  18. Masereeuw R, Russel FG. Mechanisms and clinical implications of renal drug excretion. Drug Metab Rev 2001; 33(3–4): 299–351

    Article  PubMed  CAS  Google Scholar 

  19. US FDA. Guidance for industry: population pharmacokinetics [online]. Available from URL: http://www.fda.gov/cder/guidance/1852fnl.pdf [Accessed 2007 May 18]

  20. Merz + Co. Validation of a GC/MS-method for the quantitative assessment of memantine in human plasma and urine [internal report]. Frankfurt/Main: Merz + Co., 2001

  21. Sheiner LB, Beal SL. Bayesian individualization of pharmacokinetics: simple implementation and comparison with non-Bayesian methods. J Pharm Sci 1982; 71: 1344–8

    Article  PubMed  CAS  Google Scholar 

  22. Hastie T, Tibshirani R. Generalized additive models. Stat Sci 1986; 1: 297–318

    Article  Google Scholar 

  23. Hastie T, Tibshirani R. Generalized additive models for medical research. Stat Methods Med Res 1995; 4(3): 187–96

    Article  PubMed  CAS  Google Scholar 

  24. Maitre PO, Buhrer M, Thomson D, et al. A three-step approach combining Bayesian regression and NONMEM population analysis: application to midazolam. J Pharmacokinet Biopharm 1991; 19(4): 377–84

    PubMed  CAS  Google Scholar 

  25. Mandema JW, Verotta D, Sheiner LB. Building population pharmacokinetic-pharmacodynamic models I: models for covariate effects. J Pharmacokinet Biopharm 1992; 20(5): 511–28

    PubMed  CAS  Google Scholar 

  26. Wählby U, Jonsson EN, Karlsson MO. Comparison of stepwise covariate model building strategies in population pharmacokinetic-pharmacodynamic analysis. AAPS PharmSci 2002; 4(E27): 1–12

    Google Scholar 

  27. R Development Core Team, R Development Core Team. The comprehensive R archive network [online]. Available from URL: http://cran.r-project.org/ [Accessed 2006 Jan 15]

  28. Akaike H. A new look at the statistical model identification. IEEE Trans Autom Contr 1974; 19: 716–23

    Article  Google Scholar 

  29. Perri D, Ito S, Rowsell V, et al. The kidney: the body’s playground for drugs: an overview of renal drug handling with selected clinical correlates. Can J Clin Pharmacol 2003; 10(1): 17–23

    PubMed  Google Scholar 

  30. Nierenberg DW. Drug inhibition of penicillin tubular secretion: concordance between in vitro and clinical findings. J Pharmacol Exp Ther 1987; 240(3): 712–6

    PubMed  CAS  Google Scholar 

  31. Somogyi A, Stockley C, Keal J, et al. Reduction of metformin renal tubular secretion by cimetidine in man. Br J Clin Pharmacol 1987; 23(5): 545–51

    Article  PubMed  CAS  Google Scholar 

  32. Fujita T, Urban TJ, Leabman MK, et al. Transport of drugs in the kidney by the human organic cation transporter, OCT2 and its genetic variants. J Pharm Sci 2006; 95(1): 25–36

    Article  PubMed  CAS  Google Scholar 

  33. Gaudry SE, Sitar DS, Smyth DD, et al. Gender and age as factors in the inhibition of renal clearance of amantadine by quinine and quinidine. Clin Pharmacol Ther 1993; 54(1): 23–7

    Article  PubMed  CAS  Google Scholar 

  34. Busch AE, Karbach U, Miska D, et al. Human neurons express the polyspecific cation transporter hOCT2, which translocates monoamine neurotransmitters, amantadine, and memantine. Mol Pharmacol 1998; 54(2): 342–52

    PubMed  CAS  Google Scholar 

  35. Fourie J, Escobar MR, Sitar DS. NMDA receptor antagonists to characterize rat renal organic cation transporter function. Eur J Pharmacol 2002; 452(1): 1–10

    Article  PubMed  CAS  Google Scholar 

  36. Launay-Vacher V, Izzedine H, Karie S, et al. Renal tubular drug transporters. Nephron Physiol 2006; 103(3): 97–106

    Article  Google Scholar 

  37. Fromm MF. Importance of P-glycoprotein for drug disposition in humans. Eur J Clin Invest 2003; 33 Suppl. 2: 6–9

    Article  PubMed  CAS  Google Scholar 

  38. Periclou AP, Ventura D, Sherman T, et al. Lack of pharmacokinetic or pharmacodynamic interaction between memantine and donepezil. Ann Pharmacother 2004; 38(9): 1389–94

    Article  PubMed  CAS  Google Scholar 

  39. Rao N, Chou T, Ventura D, et al. Investigation of the pharmacokinetic and pharmacodynamic interactions between memantine and glyburide/metformin in healthy young subjects: a single-center, multiple-dose, open-label study. Clin Ther 2005; 27(10): 1596–606

    Article  PubMed  CAS  Google Scholar 

  40. Nagy CF, Kumar D, Cullen EI, et al. Steady-state pharmacokinetics and safety of donepezil HC1 in subjects with moderately impaired renal function. Br J Clin Pharmacol 2004; 58 Suppl. 1: 18–24

    Article  PubMed  CAS  Google Scholar 

  41. Tiseo PJ, Foley K, Friedhoff LT. An evaluation of the pharmacokinetics of donepezil HC1 in patients with moderately to severely impaired renal function. Br J Clin Pharmacol 1998; 46 Suppl. 1: 56–60

    Article  PubMed  CAS  Google Scholar 

  42. Honegger UE, Quack G, Wiesmann UN. Evidence for lysosomotropism of memantine in cultured human cells: cellular kinetics and effects of memantine on phospholipid content and composition, membrane fluidity and β-adrenergic transmission. Pharmacol Toxicol 1993; 73: 202–8

    Article  PubMed  CAS  Google Scholar 

  43. Ishizaki J, Yokogawa K, Ichimura F, et al. Uptake of imipramine in rat liver lysosomes in vitro and its inhibition by basic drugs. J Pharmacol Exp Ther 2000; 294(3): 1088–98

    PubMed  CAS  Google Scholar 

  44. Ohkuma S, Poole B. Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc Natl Acad Sci U S A 1978; 75(7): 3327–31

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank all of the patients who have participated in the trial, the personnel of the participating outpatient clinics and Bernd Eilbacher (Merz + Co., Frankfurt/Main, Germany) for measurement of memantine plasma concentrations. The GAM analysis was performed by Christina Rabe and Annette Pfahlberg, PhD (Department of Medical Informatics, Biometry and Epidemiology, University of Erlangen, Erlangen, Germany). No sources of funding were used to assist in the preparation of this study. The authors have no conflicts of interest that are directly relevant to the content of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Kornhuber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kornhuber, J., Kennepohl, E.M., Bleich, S. et al. Memantine Pharmacotherapy. Clin Pharmacokinet 46, 599–612 (2007). https://doi.org/10.2165/00003088-200746070-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200746070-00005

Keywords

Navigation