Skip to main content
Log in

Unified error analysis of discontinuous Galerkin methods for parabolic obstacle problem

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

We introduce and study various discontinuous Galerkin (DG) finite element approximations for a parabolic variational inequality associated with a general obstacle problem in ℝd (d = 2, 3). For the fully-discrete DG scheme, we employ a piecewise linear finite element space for spatial discretization, whereas the time discretization is carried out with the implicit backward Euler method. We present a unified error analysis for all well known symmetric and non-symmetric DG fully discrete schemes, and derive error estimate of optimal order \({\cal O}(h + \Delta t)\) in an energy norm. Moreover, the analysis is performed without any assumptions on the speed of propagation of the free boundary and only the realistic regularity \({u_t} \in {{\cal L}^2}(0,T;{{\cal L}^2}(\Omega ))\) is assumed. Further, we present some numerical experiments to illustrate the performance of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. N. Arnold: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19 (1982), 742–760.

    Article  MathSciNet  MATH  Google Scholar 

  2. D. N. Arnold, F. Brezzi, B. Cockburn, L. D. Marini: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2002), 1749–1779.

    Article  MathSciNet  MATH  Google Scholar 

  3. I. Babuška, M. Zlámal: Nonconforming elements in the finite element method with penalty. SIAM J. Numer. Anal. 10 (1973), 863–875.

    Article  MathSciNet  MATH  Google Scholar 

  4. L. Banz, E. P. Stephan: hp-adaptive IPDG/TDG-FEM for parabolic obstacle problems. Comput. Math. Appl. 67 (2014), 712–731.

    Article  MathSciNet  MATH  Google Scholar 

  5. F. Bassi, S. Rebay, G. Mariotti, S. Pedinotti, M. Savini: A high order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows. Proceedings of 2nd European Conference on Turbomachinery, Fluid Dynamics and Thermodynamics (R. Decuypere, G. Dibelius, eds.). Technologisch Instituut, Antwerpen, 1997, pp. 99–108.

    Google Scholar 

  6. A. E. Berger, R. S. Falk: An error estimate for the truncation method for the solution of parabolic obstacle variational inequalities. Math. Comput. 31 (1977), 619–628.

    Article  MathSciNet  MATH  Google Scholar 

  7. S. C. Brenner, L. Owens, L.-Y. Sung: A weakly over-penalized symmetric interior penalty method. ETNA, Electron. Tran. Numer. Anal. 30 (2008), 107–127.

    MathSciNet  MATH  Google Scholar 

  8. H. Brézis: Problèmes unilatéraux. J. Math. Pures Appl. (9) 51 (1972), 1–168. (In French.)

    MathSciNet  MATH  Google Scholar 

  9. H. Brézis: Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert. North-Holland Mathematics Studies 5. North-Holland, Amsterdam, 1973. (In French.)

    MATH  Google Scholar 

  10. F. Brezzi, G. Manzini, D. Marini, P. Pietra, A. Russo: Discontinuous finite elements for diffusion problems. Francesco Brioschi (1824–1897) Convegno di Studi Matematici. Istituto Lombardo, Accademia di Scienze e Lettere, Milan, 1999, pp. 197–217.

    MATH  Google Scholar 

  11. F. Brezzi, G. Manzini, D. Marini, P. Pietra, A. Russo: Discontinuous Galerkin approximations for elliptic problems. Numer. Methods Partial Differ. Equations 16 (2000), 365–378.

    Article  MathSciNet  MATH  Google Scholar 

  12. P. Castillo, B. Cockburn, I. Perugia, D. Schötzau: An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 38 (2000), 1676–1706.

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Česenek, M. Feistauer: Theory of the space-time discontinuous Galerkin method for nonstationary parabolic problems with nonlinear convection and diffusion. SIAM J. Numer. Anal. 50 (2012), 1181–1206.

    Article  MathSciNet  MATH  Google Scholar 

  14. Z. Chen, R. H. Nochetto: Residual type a posteriori error estimates for elliptic obstacle problems. Numer. Math. 84 (2000), 527–548.

    Article  MathSciNet  MATH  Google Scholar 

  15. P. G. Ciarlet: The Finite Element Method for Elliptic Problems. Studies in Mathematics and Its Applications 4. North-Holland, Amsterdam, 1978.

    Book  MATH  Google Scholar 

  16. B. Cockburn, G. Kanschat, I. Perugia, D. Schötzau: Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids. SIAM J. Numer. Anal. 39 (2001), 264–285.

    Article  MathSciNet  MATH  Google Scholar 

  17. B. Cockburn, C.-W. Shu: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35 (1998), 2440–2463.

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Fetter: L-error estimate for an approximation of a parabolic variational inequality. Numer. Math. 50 (1987), 557–565.

    Article  MathSciNet  MATH  Google Scholar 

  19. V. Girault, B. Rivière, M. F. Wheeler: A discontinuous Galerkin method with nonoverlapping domain decomposition for the Stokes and Navier-Stokes problems. Math. Comput. 74 (2005), 53–84.

    Article  MathSciNet  MATH  Google Scholar 

  20. R. Glowinski, J.-L. Lions, R. Trémolières: Numerical Methods for Variational Inequalities. Studies in Mathematics and Its Applications 8. North-Holland, Amsterdam, 1981.

    MATH  Google Scholar 

  21. T. Gudi, P. Majumder: Conforming and discontinuous Galerkin FEM in space for solving parabolic obstacle problem. Comput. Math. Appl. 78 (2019), 3896–3915.

    Article  MathSciNet  MATH  Google Scholar 

  22. T. Gudi, P. Majumder: Convergence analysis of finite element method for a parabolic obstacle problem. J. Comput. Appl. Math. 357 (2019), 85–102.

    Article  MathSciNet  MATH  Google Scholar 

  23. T. Gudi, P. Majumder: Crouzeix-Raviart finite element approximation for the parabolic obstacle problem. Comput. Methods Appl. Math. 20 (2020), 273–292.

    Article  MathSciNet  MATH  Google Scholar 

  24. T. Gudi, N. Nataraj, A. K. Pani: hp-discontinuous Galerkin methods for strongly nonlinear elliptic boundary value problems. Numer. Math. 109 (2008), 233–268.

    Article  MathSciNet  MATH  Google Scholar 

  25. T. Gudi, K. Porwal: A posteriori error control of discontinuous Galerkin methods for elliptic obstacle problems. Math. Comput. 83 (2014), 579–602.

    Article  MathSciNet  MATH  Google Scholar 

  26. M. Hintermüller, K. Ito, K. Kunisch: The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13 (2003), 865–888.

    Article  MathSciNet  MATH  Google Scholar 

  27. J. Hozman, T. Tichý, M. Vlasák: DG method for pricing European options under Merton jump-diffusion model. Appl. Math., Praha 64 (2019), 501–530.

    MathSciNet  MATH  Google Scholar 

  28. C. Johnson: A convergence estimate for an approximation of a parabolic variational inequality. SIAM J. Numer. Anal. 13 (1976), 599–606.

    Article  MathSciNet  MATH  Google Scholar 

  29. D. Kinderlehrer, G. Stampacchia: An Introduction to Variational Inequalities and Their Applications. Classics in Applied Mathematics 31. SIAM, Philadelphia, 2000.

    Book  MATH  Google Scholar 

  30. J.-L. Lions: Partial differential inequalities. Russ. Math. Surv. 27 (1972), 91–159.

    Article  MATH  Google Scholar 

  31. J.-L. Lions, G. Stampacchia: Variational inequalities. Commun. Pure Appl. Math. 20 (1967), 493–519.

    Article  MATH  Google Scholar 

  32. K.-S. Moon, R. H. Nochetto, T. von Petersdorff, C.-S. Zhang: A posteriori error analysis for parabolic variational inequalities. ESAIM, Math. Model. Numer. Anal. 41 (2007), 485–511.

    Article  MathSciNet  MATH  Google Scholar 

  33. R. H. Nochetto, G. Savaré, C. Verdi: Error control of nonlinear evolution equations. C. R. Acad. Sci., Paris, Sér. I, Math. 326 (1998), 1437–1442.

    Article  MathSciNet  MATH  Google Scholar 

  34. R. H. Nochetto, G. Savaré, C. Verdi: A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations. Commun. Pure Appl. Math. 53 (2000), 525–589.

    Article  MathSciNet  MATH  Google Scholar 

  35. E. Otárola, A. J. Salgado: Finite element approximation of the parabolic fractional obstacle problem. SIAM J. Numer. Anal. 54 (2016), 2619–2639.

    Article  MathSciNet  MATH  Google Scholar 

  36. A. K. Pani, P. C. Das: A priori error estimates for a single-phase quasilinear Stefan problem in one space dimension. IMA J. Numer. Anal. 11 (1991), 377–392.

    Article  MathSciNet  MATH  Google Scholar 

  37. B. Riviére: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. Frontiers in Applied Mathematics 35. SIAM, Philadelphia, 2008.

    Book  MATH  Google Scholar 

  38. B. Riviére, M. F. Wheeler, V. Girault: A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems. SIAM J. Numer. Anal. 39 (2001), 902–931.

    Article  MathSciNet  MATH  Google Scholar 

  39. J. Rulla: Error analysis for implicit approximations to solutions to Cauchy problems. SIAM J. Numer. Anal. 33 (1996), 68–87.

    Article  MathSciNet  MATH  Google Scholar 

  40. G. Savaré: Weak solutions and maximal regularity for abstract evolution inequalities. Adv. Math. Sci. Appl. 6 (1996), 377–418.

    MathSciNet  MATH  Google Scholar 

  41. V. Thomée: Galerkin Finite Element Methods for Parabolic Problems. Springer Series in Computational Mathematics 25. Springer, Berlin, 2006.

    MATH  Google Scholar 

  42. C. Vuik: An L2-error estimate for an approximation of the solution of a parabolic variational inequality. Numer. Math. 57 (1990), 453–471.

    Article  MathSciNet  MATH  Google Scholar 

  43. M. F. Wheeler: An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15 (1978), 152–161.

    Article  MathSciNet  MATH  Google Scholar 

  44. X. Yang, G. Wang, X. Gu: Numerical solution for a parabolic obstacle problem with nonsmooth initial data. Numer. Methods Partial Differ. Equations 30 (2014), 1740–1754.

    Article  MathSciNet  MATH  Google Scholar 

  45. C.-S. Zhang: Adaptive Finite Element Methods for Variational Inequalities: Theory and Application in Finance: Ph.D. Thesis. University of Maryland, College Park, 2007.

    Google Scholar 

Download references

Acknowledgements

The author would like to thank anonymous referee and editor for their helpful and constructive comments that lead to the improvement of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Papri Majumder.

Additional information

The work was supported by the Council of Scientific and Industrial Research, India [RP03792G].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majumder, P. Unified error analysis of discontinuous Galerkin methods for parabolic obstacle problem. Appl Math 66, 673–699 (2021). https://doi.org/10.21136/AM.2021.0030-20

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.21136/AM.2021.0030-20

Keywords

MSC 2020

Navigation