Skip to main content
Log in

Two new approaches for solving elliptic obstacle problems using discontinuous Galerkin methods

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

The main aim of this article is to present two new ways to solve the elliptic obstacle problem by using discontinuous Galerkin finite element methods. In Gaddam and Gudi (Comput Methods Appl Math 18:223–236, 2018. https://doi.org/10.1515/cmam-2017-0018), a bubble enriched conforming quadratic finite element method is introduced and analyzed for the obstacle problem in dimension 3. In this article, without adding bubble functions, we derive optimal order (with respect to regularity) a priori error estimates in dimension 2 and 3 using the localized behavior of DG methods. We consider two different discrete sets, one with integral constraints motivated from Gaddam and Gudi (2018) and the other with nodal constraints at quadrature points. We also discuss the reliability and efficiency of a proposed a posteriori error estimator. The analysis is carried out in a unified setting which holds for several DG methods. Numerical results are presented to illustrate the theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ainsworth, M., Oden, J.T.: A posteriori Error Estimation in Finite Element Analysis. Pure and Applied Mathematics (New York). Wiley-Interscience, New York (2000)

    MATH  Google Scholar 

  2. Ainsworth, A., oden, J.T., Lee, C.Y.: Local a posteriori error estimates for variational inequalities. Numer. Methods Partial Differ. Equ. 9, 23–33 (1993)

    MATH  Google Scholar 

  3. Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19, 742–760 (1982)

    MathSciNet  MATH  Google Scholar 

  4. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002)

    MathSciNet  MATH  Google Scholar 

  5. Atkinson, K., Han, W.: Theoretical Numerical Analysis. A Functional Analysis Framework, Thrid edn. Springer, Berlin (2009)

    MATH  Google Scholar 

  6. Banz, L., Stephan, E.P.: A posteriori error estimates of \(hp\)-adaptive IPDG-FEM for elliptic obstacle problems. Appl. Numer. Math. 76, 76–92 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Banz, L., Schröder, A.: Biorthogonal basis functions in hp-adaptive FEM for elliptic obstacle problems. Comput. Math. Appl. 70(8), 1721–1742 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Bartels, S., Carstensen, C.: Averaging techniques yield relaible a posteriori finite element error control for obstacle problems. Numer. Math. 99, 225–249 (2004)

    MathSciNet  MATH  Google Scholar 

  9. Braess, D.: A posteriori error estimators for obstacle problems-another look. Numer. Math. 101, 415–421 (2005)

    MathSciNet  MATH  Google Scholar 

  10. Brenner, S.C.: Two-level additive Schwarz preconditioners for nonconforming finite element methods. Math. Comput. 65, 897–921 (1996)

    MathSciNet  MATH  Google Scholar 

  11. Brenner, S.C.: Convergence of nonconforming multigrid methods without full elliptic regularity. Math. Comput. 68, 25–53 (1999)

    MathSciNet  MATH  Google Scholar 

  12. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods \((\)Third Edition\()\). Springer, New York (2008)

    Google Scholar 

  13. Brenner, S.C., Sung, L., Zhang, Y.: Finite element methods for the displacement obstacle problem of clamped plates. Math. Comput. 81, 1247–1262 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Brenner, S.C., Sung, L., Zhang, H., Zhang, Y.: A quadratic C0 interior penalty method for the displacement obstacle problem of clamped Kirchhoff plates. SIAM J. Numer. Anal. 50, 3329–3350 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Brezzi, F., Hager, W.W., Raviart, P.A.: Error estimates for the finite element solution of variational inequalities. Part I. Primal theory. Numer. Math. 28, 431–443 (1977)

    MathSciNet  MATH  Google Scholar 

  16. Braess, D., Carstensen, C., Hoppe, R.H.W.: Convergence analysis of a conforming adaptive finite element method for an obstacle problem. Numer. Math. 107, 455–471 (2007)

    MathSciNet  MATH  Google Scholar 

  17. Braess, D., Carstensen, C., Hoppe, R.: Error reduction in adaptive finite element approximations of elliptic obstacle problems. J. Comput. Math. 27, 148–169 (2009)

    MathSciNet  MATH  Google Scholar 

  18. Chen, Z., Nochetto, R.: Residual type a posteriori error estimates for elliptic obstacle problems. Numer. Math. 84, 527–548 (2000)

    MathSciNet  MATH  Google Scholar 

  19. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  20. Pietro, D., Antonio, D., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods. Mathématiques & Applications (Berlin), vol. 69. Springer, Heidelberg (2012)

    MATH  Google Scholar 

  21. Dörlfer, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33, 1106–1124 (1996)

    MathSciNet  Google Scholar 

  22. Douglas Jr., J., Dupont, T.: Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods. Lecture Notes in Physics, vol. 58. Springer, Berlin (1976)

    Google Scholar 

  23. Falk, R.S.: Error estimates for the approximation of a class of variational inequalities. Math. Comput. 28, 963–971 (1974)

    MathSciNet  MATH  Google Scholar 

  24. Feischl, M., Page, M., Praetorius, D.: Convergence of adaptive FEM for some elliptic obstacle problem with inhomogeneous Dirichlet data. Int. J. Numer. Anal. Model. 11, 229–253 (2014)

    MathSciNet  MATH  Google Scholar 

  25. Gaddam, S., Gudi, T.: Bubbles enriched quadratic finite element method for the 3D-elliptic obstacle problem. Comput. Methods Appl. Math. 18, 223–236 (2018). https://doi.org/10.1515/cmam-2017-0018

    Article  MathSciNet  MATH  Google Scholar 

  26. Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer, Berlin (2008)

    MATH  Google Scholar 

  27. Zou, Q., Veeser, A., Kornhuber, R., Gräser, C.: Hierarchical error estimates for the energy functional in obstacle problems. Numer. Math. 117, 653–677 (2011)

    MathSciNet  MATH  Google Scholar 

  28. Gudi, T., Porwal, K.: A posteriori error control of discontinuous Galerkin methods for elliptic obstacle problems. Math. Comput. 83, 579–602 (2014)

    MathSciNet  MATH  Google Scholar 

  29. Gudi, T., Porwal, K.: A remark on the a posteriori error analysis of discontinuous Galerkin methods for obstacle problem. Comput. Methods Appl. Math. 14, 71–87 (2014)

    MathSciNet  MATH  Google Scholar 

  30. Gudi, T., Porwal, K.: A reliable residual based a posteriori error estimator for a quadratic finite element method for the elliptic obstacle problem. Comput. Methods Appl. Math. 15, 145–160 (2015)

    MathSciNet  MATH  Google Scholar 

  31. Gustafsson, T., Stenberg, R., Videman, J.: Mixed and stabilized finite element methods for the obstacle problem. SIAM J. Numer. Anal. 55–6, 2718–2744 (2017). https://doi.org/10.1137/16M1065422

    Article  MathSciNet  MATH  Google Scholar 

  32. Gwinner, J.: On the \(p\)-version approximation in the boundary element method for a variational inequality of the second kind modelling unilateral contact and given friction. Appl. Numer. Math. 59, 2774–2784 (2009)

    MathSciNet  MATH  Google Scholar 

  33. Gwinner, J.: \(hp\)-FEM convergence for unilateral contact problems with Tresca friction in plane linear elastostatics. J. Comput. Appl. Math. 254, 175–184 (2013)

    MathSciNet  MATH  Google Scholar 

  34. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer, New York (2007)

    MATH  Google Scholar 

  35. Hintermüller, M., Ito, K., Kunish, K.: The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13, 865–888 (2003)

    MathSciNet  MATH  Google Scholar 

  36. Hoppe, R.H.W., Kornhuber, R.: Adaptive multilevel methods for obstacle problems. SIAM J. Numer. Anal. 31, 301–323 (1994)

    MathSciNet  MATH  Google Scholar 

  37. Kesavan, S.: Topics in Functional Analysis and Applications. New Age International Ltd, Publishers, New Delhi (1989)

    MATH  Google Scholar 

  38. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. SIAM, Philadelphia (2000)

    MATH  Google Scholar 

  39. Nochetto, R., Siebert, K., Veeser, A.: Fully localized a posteriori error estimators and barrier sets for contact problems. SIAM J. Numer. Anal. 42, 2118–2135 (2005)

    MathSciNet  MATH  Google Scholar 

  40. Nochetto, R., Petersdorff, T.V., Zhang, C.S.: A posteriori error analysis for a class of integral equations and variational inequalities. Numer. Math. 116, 519–552 (2010)

    MathSciNet  MATH  Google Scholar 

  41. Page, M., Praetorius, D.: Convergence of adaptive FEM for some elliptic obstacle problem. Appl. Anal. 92, 595–615 (2013)

    MathSciNet  MATH  Google Scholar 

  42. Hammer, P.C., Marlowe, O.J., Stroud, A.H.: Numerical integration over simplexes. Math. Tables Other Aids Comput. 10(55), 137–139 (1956)

    MathSciNet  MATH  Google Scholar 

  43. Rivière, B., Wheeler, M.F., Girault, V.: A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems. SIAM J. Numer. Anal. 39, 902–931 (2001)

    MathSciNet  MATH  Google Scholar 

  44. Riviëre, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. SIAM, Philadelphia (2008)

    MATH  Google Scholar 

  45. Siebert, K., Veeser, A.: A uniliterally constrained quadratic minimization with adaptive finite elements. SIAM. J. Optim. 18, 260–289 (2007)

    MathSciNet  MATH  Google Scholar 

  46. Suttmeier, F.T.: Numerical Solution of Variational Inequalities by Adaptive Finite Elements. Vieweg+Teubner Research, Berlin (2008)

    Google Scholar 

  47. Veeser, A.: Efficient and relaible a posteriori error estimators for elliptic obstacle problems. SIAM J. Numer. Anal. 39, 146–167 (2001)

    MathSciNet  MATH  Google Scholar 

  48. Wang, L.: On the quadratic finite element approximation to the obstacle problem. Numer. Math. 92, 771–778 (2002)

    MathSciNet  MATH  Google Scholar 

  49. Wang, F., Han, W., Cheng, X.: Discontinuous Galerkin methods for solving elliptic variational inequalities. SIAM J. Numer. Anal. 48, 708–733 (2010)

    MathSciNet  MATH  Google Scholar 

  50. Wang, F., Han, W., Eichholz, J., Cheng, X.: A posteriori error estimates for discontinuous Galerkin methods of obstacle problems. Nonlinear Anal. Real World Appl. 22, 664–679 (2015)

    MathSciNet  MATH  Google Scholar 

  51. Wang, F., Han, W., Eichholz, J.: A two level algorithm for an obstacle problem. Appl. Math. Comput. 330, 65–76 (2018)

    MathSciNet  MATH  Google Scholar 

  52. Weiss, A., Wohlmuth, B.I.: A posteriori error estimator for obstacle problems. SIAM J. Numer. Anal. 32, 2627–2658 (2010)

    MathSciNet  MATH  Google Scholar 

  53. Wheeler, M.F.: An elliptic collocation-finite-element method with interior penalties. SIAM J. Numer. Anal. 15, 152–161 (1978)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thirupathi Gudi.

Additional information

Communicated by Ralf Hiptmair.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author’s work is supported by University Grants Commission, India. The second author’s work is supported by the DST MATRICS Grant. The third author’s work is supported by DST Inspire Faculty Research Grant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaddam, S., Gudi, T. & Porwal, K. Two new approaches for solving elliptic obstacle problems using discontinuous Galerkin methods. Bit Numer Math 62, 89–124 (2022). https://doi.org/10.1007/s10543-021-00869-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-021-00869-w

Keywords

Mathematics Subject Classification

Navigation