Skip to main content
Log in

Polynomial chaos in evaluating failure probability: A comparative study

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

Recent developments in the field of stochastic mechanics and particularly regarding the stochastic finite element method allow to model uncertain behaviours for more complex engineering structures. In reliability analysis, polynomial chaos expansion is a useful tool because it helps to avoid thousands of time-consuming finite element model simulations for structures with uncertain parameters. The aim of this paper is to review and compare available techniques for both the construction of polynomial chaos and its use in computing failure probability. In particular, we compare results for the stochastic Galerkin method, stochastic collocation, and the regression method based on Latin hypercube sampling with predictions obtained by crude Monte Carlo sampling. As an illustrative engineering example, we consider a simple frame structure with uncertain parameters in loading and geometry with prescribed distributions defined by realistic histograms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Augustin, A. Gilg, M. Paffrath, P. Rentrop, M. Villegas, U. Wever: An accuracy comparison of polynomial chaos type methods for the propagation of uncertainties. J. Math. Ind. 3 (2013), 24 pages.

    MathSciNet  MATH  Google Scholar 

  2. I. Babuška, F. Nobile, R. Tempone: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45 (2007), 1005–1034.

    Article  MathSciNet  Google Scholar 

  3. I. Babuška, R. Tempone, G. E. Zouraris: Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal. 42 (2004), 800–825.

    Article  MathSciNet  Google Scholar 

  4. G. Blatman, B. Sudret: An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis. Probabilistic Engineering Mechanics 25 (2010), 183–197.

    Article  Google Scholar 

  5. G. Blatman, B. Sudret: Adaptive sparse polynomial chaos expansion based on least angle regression. J. Comput. Phys. 230 (2011), 2345–2367.

    Article  MathSciNet  Google Scholar 

  6. H. Cheng, A. Sandu: Efficient uncertainty quantification with the polynomial chaos method for stiff systems. Math. Comput. Simul. 79 (2009), 3278–3295.

    Article  MathSciNet  Google Scholar 

  7. S.–K. Choi, R. V. Grandhi, R. A. Canfield, C. L. Pettit: Polynomial chaos expansion with latin hypercube sampling for estimating response variability. AIAA J. 42 (2004), 1191–1198.

    Article  Google Scholar 

  8. O. Ditlevsen, H. O. Madsen: Structural Reliability Methods. John Wiley & Sons, Chichester, 1996.

    Google Scholar 

  9. M. Eigel, C. J. Gittelson, C. Schwab, E. Zander: Adaptive stochastic Galerkin FEM. Comput. Methods Appl. Mech. Eng. 270 (2014), 247–269.

    Article  Google Scholar 

  10. M. S. Eldred, J. Burkardt: Comparison of non–intrusive polynomial chaos and stochastic collocation methods for uncertainty quantification. The 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, Orlando. AIAA 2009–976, 2009, pp. 20.

    Book  Google Scholar 

  11. H. C. Elman, C. W. Miller, E. T. Phipps, R. S. Tuminaro: Assessment of collocation and Galerkin approaches to linear diffusion equations with random data. Int. J. Uncertain. Quantif. 1 (2011), 19–33.

    Article  MathSciNet  Google Scholar 

  12. A. Fülöp, M. Iványi: Safety of a column in a frame. Probabilistic Assessment of Structures Using Monte Carlo Simulation: Background, Exercises and Software (P. Marek et al., eds.). Institute of Theoretical and Applied Mechanics, Academy of Sciences of the Czech Republic, Praha, CD, Chapt. 8. 10, 2003.

    Google Scholar 

  13. R. G. Ghanem, P. D. Spanos: Stochastic Finite Elements: A Spectral Approach, Revised Edition. Dover Civil and Mechanical Engineering, Dover Publications, 2012.

    Google Scholar 

  14. M. Gutiérrez, S. Krenk: Stochastic finite element methods. Encyclopedia of Computational Mechanics (E. Stein et al., eds.). John Wiley & Sons, Chichester, 2004.

    Google Scholar 

  15. F. Heiss, V. Winschel: Likelihood approximation by numerical integration on sparse grids. J. Econom. 144 (2008), 62–80.

    Article  MathSciNet  Google Scholar 

  16. S. Hosder, R. W. Walters, M. Balch: Efficient sampling for non–intrusive polynomial chaos applications with multiple uncertain input variables. The 48th AIAA/ASME/ ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu. AIAA 2007–1939, 2007, pp. 16.

    Google Scholar 

  17. C. Hu, B. D. Youn: Adaptive–sparse polynomial chaos expansion for reliability analysis and design of complex engineering systems. Struct. Multidiscip. Optim. 43 (2011), 419–442.

    Article  MathSciNet  Google Scholar 

  18. E. Janouchová, A. Kučerová: Competitive comparison of optimal designs of experiments for sampling–based sensitivity analysis. Comput. Struct. 124 (2013), 47–60.

    Article  Google Scholar 

  19. E. Janouchová, A. Kučerová, J. Sýkora: Polynomial chaos construction for structural reliability analysis. Proceedings of the Fourth International Conference on Soft Computing Technology in Civil, Structural and Environmental Engineering (Y. Tsompanakis et al., eds.). Civil–Comp Press, Stirlingshire, 2015, Paper 9.

    Google Scholar 

  20. J. Li, J. Li, D. Xiu: An efficient surrogate–based method for computing rare failure probability. J. Comput. Phys. 230 (2011), 8683–8697.

    Article  MathSciNet  Google Scholar 

  21. J. Li, D. Xiu: Evaluation of failure probability via surrogate models. J. Comput. Phys. 229 (2010), 8966–8980.

    Article  MathSciNet  Google Scholar 

  22. X. Ma, N. Zabaras: An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations. J. Comput. Phys. 228 (2009), 3084–3113.

    Article  MathSciNet  Google Scholar 

  23. H. G. Matthies: Uncertainty quantification with stochastic finite elements. Encyclopedia of Computational Mechanics (E. Stein et al., eds.). John Wiley & Sons, Chichester, 2007.

    Google Scholar 

  24. H. G. Matthies, A. Keese: Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations. Comput. Methods Appl. Mech. Eng. 194 (2005), 1295–1331.

    Article  MathSciNet  Google Scholar 

  25. H. N. Najm: Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics. Annual Review of Fluid Mechanics 41 (S. H. Davis et al., eds.). Annual Reviews, Palo Alto, 2009, pp. 35–52.

    MATH  Google Scholar 

  26. F. Nobile, R. Tempone, C. G. Webster: A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46 (2008), 2309–2345.

    Article  MathSciNet  Google Scholar 

  27. M. Paffrath, U. Wever: Adapted polynomial chaos expansion for failure detection. J. Comput. Phys. 226 (2007), 263–281.

    Article  MathSciNet  Google Scholar 

  28. M. P. Pettersson, G. Iaccarino, J. Nordström: Polynomial chaos methods. Polynomial Chaos Methods for Hyperbolic Partial Differential Equations. Numerical Techniques for Fluid Dynamics Problems in the Presence of Uncertainties. Mathematical Engineering, Springer, Cham, 2015, pp. 23–29.

    MATH  Google Scholar 

  29. R. Pulch: Stochastic collocation and stochastic Galerkin methods for linear differential algebraic equations. J. Comput. Appl. Math. 262 (2014), 281–291.

    Article  MathSciNet  Google Scholar 

  30. G. Stefanou: The stochastic finite element method: Past, present and future. Comput. Methods Appl. Mech. Eng. 198 (2009), 1031–1051.

    Article  Google Scholar 

  31. N. Wiener: The homogeneous chaos. Am. J. Math. 60 (1938), 897–936.

    Article  MathSciNet  Google Scholar 

  32. D. Xiu: Fast numerical methods for stochastic computations: A review. Commun. Comput. Phys. 5 (2009), 242–272.

    MathSciNet  MATH  Google Scholar 

  33. D. Xiu: Numerical Methods for Stochastic Computations: A Spectral Method Approach. Princeton University Press, Princeton, 2010.

    Book  Google Scholar 

  34. D. Xiu, J. S. Hesthaven: High–order collocation methods for differential equations with random inputs. SIAM J. Sci. Comput. 27 (2005), 1118–1139.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliška Janouchová.

Additional information

The research has been financially supported by the Czech Science Foundation, project No. 15-07299S.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janouchová, E., Sýkora, J. & Kučerová, A. Polynomial chaos in evaluating failure probability: A comparative study. Appl Math 63, 713–737 (2018). https://doi.org/10.21136/AM.2018.0335-17

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.21136/AM.2018.0335-17

Keywords

MSC 2010

Navigation