Skip to main content
Log in

Goal-oriented error estimates including algebraic errors in discontinuous Galerkin discretizations of linear boundary value problems

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

We deal with a posteriori error control of discontinuous Galerkin approximations for linear boundary value problems. The computational error is estimated in the framework of the Dual Weighted Residual method (DWR) for goal-oriented error estimation which requires to solve an additional (adjoint) problem. We focus on the control of the algebraic errors arising from iterative solutions of algebraic systems corresponding to both the primal and adjoint problems. Moreover, we present two different reconstruction techniques allowing an efficient evaluation of the error estimators. Finally, we propose a complex algorithm which controls discretization and algebraic errors and drives the adaptation of the mesh in the close to optimal manner with respect to the given quantity of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ainsworth, R. Rankin: Guaranteed computable bounds on quantities of interest in finite element computations. Int. J. Numer. Methods Eng. 89 (2012), 1605–1634.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Arioli, J. Liesen, A. Międlar, Z. Strakoš: Interplay between discretization and algebraic computation in adaptive numerical solution of elliptic PDE problems. GAMMMitt. 36 (2013), 102–129.

    Article  MathSciNet  MATH  Google Scholar 

  3. I. Babuška, W. C. Rheinboldt: Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15 (1978), 736–754.

    Article  MathSciNet  MATH  Google Scholar 

  4. W. Bangerth, R. Rannacher: Adaptive Finite Element Methods for Differential Equations. Lectures in Mathematics, ETH Zürich, Birkhäuser, Basel, 2003.

    Google Scholar 

  5. R. E. Bank, A. Weiser: Some a posteriori error estimators for elliptic partial differential equations. Math. Comput. 44 (1985), 283–301.

    Article  MathSciNet  MATH  Google Scholar 

  6. R. Becker, R. Rannacher: An optimal control approach to a posteriori error estimation in finite element methods. Acta Numerica 10 (2001), 1–102.

    Article  MathSciNet  MATH  Google Scholar 

  7. V. Dolejší: ANGENER—software package. Charles University Prague, Faculty of Mathematics and Physics, www.karlin.mff.cuni.cz/~dolejsi/angen/angen.htm (2000).

    Google Scholar 

  8. V. Dolejší: hp-DGFEM for nonlinear convection-diffusion problems. Math. Comput. Simul. 87 (2013), 87–118.

    Article  MathSciNet  Google Scholar 

  9. V. Dolejší, M. Feistauer: Discontinuous Galerkin Method. Analysis and Applications to Compressible Flow. Springer Series in Computational Mathematics 48, Springer, Cham, 2015.

    Google Scholar 

  10. V. Dolejší, G. May, F. Roskovec, P. Šolín: Anisotropic hp-mesh optimization technique based on the continuous mesh and error models. Comput. Math. Appl. 74 (2017), 45–63.

    Article  MathSciNet  MATH  Google Scholar 

  11. V. Dolejší, F. Roskovec: Goal oriented a posteriori error estimates for the discontinuos Galerkin method. Programs and Algorithms of Numerical Mathematics 18, Proceedings of Seminar, Janov nad Nisou 2016 (J. Chleboun et al., eds.). Institute of Mathematics CAS, Praha, 2017, pp. 15–23.

    Google Scholar 

  12. V. Dolejší, P. Šolín: hp-discontinuous Galerkin method based on local higher order reconstruction. Appl. Math. Comput. 279 (2016), 219–235.

    MathSciNet  Google Scholar 

  13. M. Giles, E. Süli: Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality. Acta Numerica 11 (2002), 145–236.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Greenbaum, V. Pták, Z. Strakoš: Any nonincreasing convergence curve is possible for GMRES. SIAM J. Matrix Anal. Appl. 17 (1996), 465–469.

    Article  MathSciNet  MATH  Google Scholar 

  15. K. Harriman, D. Gavaghan, E. Süli: The importance of adjoint consistency in the approximation of linear functionals using the discontinuous Galerkin finite element method. Technical Report, Oxford University Computing Laboratory, Oxford (2004).

    Google Scholar 

  16. K. Harriman, P. Houston, B. Senior, E. Süli: hp-version discontinuous Galerkin methods with interior penalty for partial differential equations with nonnegative characteristic form. Recent Advances in Scientific Computing and Partial Differential Equations, Hong Kong 2002 (S. Y. Cheng et al., eds.). Contemp. Math. 330, American Mathematical Society, Providence, 2003, pp. 89–119.

    Chapter  Google Scholar 

  17. R. Hartmann: Adjoint consistency analysis of discontinuous Galerkin discretizations. SIAM J. Numer. Anal. 45 (2007), 2671–2696.

    Article  MathSciNet  MATH  Google Scholar 

  18. R. Hartmann, P. Houston: Symmetric interior penalty DG methods for the compressible Navier-Stokes equations. II. Goal-oriented a posteriori error estimation. Int. J. Numer. Anal. Model. 3 (2006), 141–162.

    MathSciNet  MATH  Google Scholar 

  19. P. Houston, C. Schwab, E. Süli: Discontinuous hp-finite element methods for advection- diffusion-reaction problems. SIAM J. Numer. Anal. 39 (2002), 2133–2163.

    Article  MathSciNet  MATH  Google Scholar 

  20. H. T. Huynh: A reconstruction approach to high-order schemes including discontinuous Galerkin for diffusion. 18th AIAA Computational Fluid Dynamics Conference, Miami, Florida, 2007.

    Google Scholar 

  21. D. Meidner, R. Rannacher, J. Vihharev: Goal-oriented error control of the iterative solution of finite element equations. J. Numer. Anal. 17 (2009), 143–172.

    MathSciNet  MATH  Google Scholar 

  22. R. H. Nochetto, A. Veeser, M. Verani: A safeguarded dual weighted residual method. IMA J. Numer. Anal. 29 (2009), 126–140.

    Article  MathSciNet  MATH  Google Scholar 

  23. R. Rannacher, J. Vihharev: Adaptive finite element analysis of nonlinear problems: balancing of discretization and iteration errors. J. Numer. Math. 21 (2013), 23–62.

    Article  MathSciNet  MATH  Google Scholar 

  24. T. Richter, T. Wick: Variational localizations of the dual weighted residual estimator. J. Comput. Appl. Math. 279 (2015), 192–208.

    Article  MathSciNet  MATH  Google Scholar 

  25. P. Šolín, L. Demkowicz: Goal-oriented hp-adaptivity for elliptic problems. Comput. Methods Appl. Mech. Eng. 193 (2004), 449–468.

    Article  MathSciNet  MATH  Google Scholar 

  26. E. Süli, P. Houston, C. Schwab: hp-DGFEM for partial differential equations with nonnegative characteristic form. Discontinuous Galerkin Methods. Theory, Computation and Applications, Newport 1999 (B. Cockburn et al., eds.). Lect. Notes Comput. Sci. Eng. 11, Springer, Berlin, 2000, pp. 221–230.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vít Dolejší.

Additional information

Dedicated to Professor Miloslav Feistauer on the occasion of his 75th birthday

The research of V.Dolejší was supported by Grant No. 17-01747S of the Czech Science Foundation. The research of F.Roskovec was supported by the Charles University, project GA UK No. 92315.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolejší, V., Roskovec, F. Goal-oriented error estimates including algebraic errors in discontinuous Galerkin discretizations of linear boundary value problems. Appl Math 62, 579–605 (2017). https://doi.org/10.21136/AM.2017.0173-17

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.21136/AM.2017.0173-17

Keywords

MSC 2010

Navigation