Skip to main content
Log in

Changes in benthic algal attributes during salt marsh restoration

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

To assess attributes of algal assemblages as indicators of salt marsh restoration, we chose eight pairs of salt marshes in North Carolina, USA, each pair with one restored marsh (from 1 to 28 years old) and a nearby existing salt marsh. Algae on both Spartina alterniflora and sediments (sediment algae) were collected in each marsh during spring and summer 1998 for assaying algal biomass (dry mass (DM), ash free dry mass (AFDM), chl a content, algal biovolume), algal species composition and diversity, and gross primary production. An attribute restoration ratio was calculated by dividing attribute values from each restored marsh by values from a paired reference marsh. Controlling for regional variation in reference marshes substantially increased precision in relations between attributes and the increase in age of restored marshes. The organic matter restoration ratio of sediments increased with age of restored marshes in both spring and summer. The algal biomass restoration ratios of epiphytes, calculated with algal biovolume and chl a, increased with restored marsh age in summer but not during spring. Biomass of sediment algae was not related to marsh age. The species diversity of sediment algae in summer showed an asymptotic relationship with sediment nutrient concentration. The similarity of diatom species composition between paired restored and reference sites increased with age of restored marshes during spring and summer. Primary production by epiphytic and sediment algae in summer showed site-specific changes and did not change consistently with marsh age. Algal biomass, algal diversity, and diatom species composition during summer were positively correlated with sediment nitrogen and phosphorus concentration. We concluded that other structural and functional development of restored wetlands, especially nutrient storage in sediments, regulates algal species composition and algal biomass accumulation, which can be used to evaluate salt marsh restoration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Adam, P. 1990. Saltmarsh Ecology. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Adamus, P. R. 1988. The FHWA/Adamus (WET) Method For Wetland Functional Assessment. p. 128–133. In D. D. Hook, W. H. McKee, Jr., H. K. Smith, J. Gregory, V. G. Burell, Jr., M. R. DeVoe, R. E. Sojka, S. Gilbert, R. Banks, L. H. Stolzy, C. Brooks, T. D. Matthews, and T. H. Shear (eds.) The Ecology and Management of Wetlands. Volume 2. Management, Use and Value of Wetlands. Crom Helm, London, England.

    Google Scholar 

  • APHA. 1998. Standard Methods for the Examination of Water and Wastewater. 20th edition. American Public Health Association, Washington, DC, USA.

    Google Scholar 

  • Burkholder, J. M., R. G. Wetzel, and K. L. Klomparens. 1990. Direct comparison of phosphate uptake by adnate and loosely attached microalgae within an intact biofilm matrix. Applied Environmental Microbiology 56:2882–2890.

    CAS  Google Scholar 

  • Cargill, S. M. and R. L. Jefferies. 1984. Nutrient limitation of primary production in a sub-arctic salt-marsh. Journal of Applied Ecology 21:657–668.

    Article  Google Scholar 

  • Colijn, F. 1982. Light absorption in the waters of the Ems-Dollard estuary and its consequence for the growth of phytoplankton and microphytobenthos. Netherlands Journal of Sea Research 15:196–216.

    Article  Google Scholar 

  • Craft, C. B. 2000. Co-development of wetland soils and benthic invertebrate communities following salt marsh creation. Wetlands Ecology and Management 8:197–207.

    Article  CAS  Google Scholar 

  • Craft, C. B. 2001. Soil organic carbon, nitrogen and phosphorus as indicators of recovery in restored Spartina marshes. Ecological Restoration 19:87–91.

    Google Scholar 

  • Craft, C. B., S. W. Broome, and E. D. Seneca. 1988. Soil nitrogen, phosphorus and organic carbon in transplanted esturine marshes. p. 351–358. In D. D. Hook (ed.) The Ecology and Management of Wetlands. Volume 1: Ecology of Wetlands. Timber Press, Portland, OR, USA.

    Google Scholar 

  • Craft, C. B., J. M. Reader, J. N. Sacco, and S. W. Broome. 1999. Twenty five years of ecosystem development of constructed Spartina alterniflora (Loisel) marshes. Ecological Applications 9: 1405–1419.

    Article  Google Scholar 

  • Craft, C. B., E. D. Seneca, and S. W. Broome. 1991. Poewater chemistry of natural and created marsh soils. Journal of Experimental Marine Biology and Ecology 152:187–200.

    Article  CAS  Google Scholar 

  • Currin, C. A., S. Y. Newell, and H. W. Paerl. 1995. The role of standing dead spartina-alterniflora and benthic microalgae in salt-marsh food webs-considerations based on multiple stable-isotope analysis. Marine Ecology-Progress Series 121:99–116.

    Article  Google Scholar 

  • Currin, C. A. and H. W. Paerl. 1988. Environmental and physiological controls on diel patterns of N-2 fixation in epiphytic cyanobacterial communities. Microbial Ecology 35:34–45.

    Article  Google Scholar 

  • Darley, W., C. Montague, F. Flumley, W. Sage, and A. Psalidas. 1981. Factors limiting edaphic algal biomass and productivity in a Georgia salt marsh. Journal of Phycology 17:122–128.

    Article  Google Scholar 

  • Fisher, S. G., L. Gray, N. B. Grimm, and D. E. Busch. 1982. Temporal succession in a desert stream ecosystem following flash flooding. Ecological Monographs 52:93–110.

    Article  CAS  Google Scholar 

  • Fong, P., K. E. Boyer, and J. B. Zedler. 1998. Developing an indicator of nutrient enrichment in coastal estuaries and lagoons using tissue nitrogen content of the opportunistic alga, Enteromorpha intestinalis (L. Link). Journal of Experimental Marine Biology and Ecology 231:63–79.

    Article  Google Scholar 

  • Fong, P. and J. S. Desmond. 1997. The effect of a horn snail on Ulva expansa (Chlorophyta): Consumer or facilitator of growth? Journal of Phycology 33:353–359.

    Article  Google Scholar 

  • Fong, P., K. Kamer, K. E. Boyer, and K. A. Boyle. 2001. Nutrient content of macroalgae with differing morphologies may indicate sources of nutrients for tropical marine systems. Marine Ecological Progress Series 220:137–152.

    Article  CAS  Google Scholar 

  • Frey, R. W. and P. B. Basan. 1985. Coastal salt marshes. p. 225–302. In R. A. Davis, Jr. (ed.) Coastal Sedimentary Environments. Springer Verlag, New York, NY, USA.

    Google Scholar 

  • Gallagher, J. L. and F. C. Daiber. 1974. Primary production of edaphic algal communities in a Delaware salt marsh. Limnology and Oceanography 19:390–395.

    Google Scholar 

  • Gauch, H. G. 1982. Multivariate Analysis in Community Ecology. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Hawkins, C. P., R. H. Norris, J. Gerritsen, R. M. Hughes, S. K. Jackson, R. K. Johnson, and R. J. Stevenson. 2000. Evaluation of landscape classifications for biological assessment of freshwater ecosystems: synthesis and recommendations. Journal of the North American Benthological Society 19:541–556.

    Article  Google Scholar 

  • Hook, D. D. (ed.). 1988. The Ecology and Management of Wetlands. Volume 1: Ecology of wetlands. Croom Helm, London and Sydney, Timber Press, Portland, OR, USA.

    Google Scholar 

  • Jones, K. 1974. Nitrogen fixation in a salt marsh. Journal of Ecology 62:553–565.

    Article  Google Scholar 

  • Keer, G. H. and J. B. Zedler. 2002. Salt marsh canopy architecture differs with the number and composition of species. Ecological Applications 12:456–473.

    Article  Google Scholar 

  • Kiehl, K., P. Esselink, and J. P. Bakker. 1997. Nutrient limitation and plant species composition in temperate salt marshes. Oecologia 111:325–330.

    Article  Google Scholar 

  • Kreeger, D. A. and R. I. E. Newell. 1996. Ingestion and assimilation of carbon from cellulolytic bacteria and heterotrophic flagellates by the mussels Geukensia demissa and Mytilus edulis (Bivalvia, Mollusca). Aquatic Microbial Ecology 11:205–214.

    Article  Google Scholar 

  • Kreeger, D. A. and R. I. E. Newell 2000. Trophic complexity between producers and invertebrate consumers in salt marshes. p. 187–220. In M. P. Weinstein and D. A. Kreeger (eds.) International Symposium: Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Larned, S. T. 1998. Nitrogen- versus phosphorus-limited growth and sources of nutrients for coral reef macroalgae. Marine Biology 132:409–421.

    Article  Google Scholar 

  • Leach, J. H. 1970. Epibenthic algal production in an intertidal mudflat. Limnology and Oceanography 15:514–521.

    Article  Google Scholar 

  • Lockwood, J. L. and S. L. Pimm. 1999. When does restoration succeed? p. 363–392. In E. Weiher and P. Keddy (eds.) Ecological Assembly Rules: Perspectives, Advances, Retreats. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Mayer, P. M. and S. M. Galatowitsch. 1999. Diatom communities as ecological indicators of recovery in restored prairie wetlands. Wetlands 19:765–774.

    Article  Google Scholar 

  • McCormick, P. V. and R. J. Stevenson, 1991. Grazer control of nutrient availability in the periphyton. Oecologia 86:287–291.

    Article  Google Scholar 

  • Mitsch, W. J. and B. F. Wilson. 1996. Improving the success of wetland creation and restoration with know-how, time, and self-design. Ecological Applications 6:77–83.

    Article  Google Scholar 

  • Mitsch, W. J. and J. G. Gosselink. 2000. Wetlands. John Wiley & Sons, Inc., New York, NY, USA.

    Google Scholar 

  • Moeller, R. E., J. M. Burkholder, and R. G. Wetzel. 1988. Significance of sedimentary phosphorus to a rooted submersed macrophyte (Najas flexilis) and its algal epiphytes. Aquatic Botany 32: 261–281.

    Article  Google Scholar 

  • Montagna, P., B. Coull, T. Herring, and B. Dudlwy. 1983. The relationship between abundances of meiofauna and their suspected microbial food (diatoms and bacteria). Estuarine, Coastal and Shelf Science 17:381–394.

    Article  Google Scholar 

  • Morgan, P. A. and F. T. Short. 2002. Using functional trajectories to track constructed salt marsh development in the Great Bay Estuary, Maine/New Hampshire, USA. Restoration Ecology 10:461–473.

    Article  Google Scholar 

  • Neckles, H. A., M. Dionne, D. M. Burdick, C. T. Roman, R. Buchsbaum, and E. Hutchins. 2002. A monitoring protocol to assess tidal restoration of salt marshes on local and regional scales. Restoration Ecology 10:556–563.

    Article  Google Scholar 

  • Newell, S. Y., R. D. Fallon, and J. D. Miller. 1989. Decomposition and microbial dynamics for standing, naturally positioned leaves of the salt-marsh grass Spartina-alterniflora. Marine Biology 101: 471–481.

    Article  Google Scholar 

  • Newell, R. I. E., N. Marshall, A. Sasekumar, and V. C. Chong. 1995. Relative importance of benthic microalgae, phytoplankton, and mangroves as sources of nutrition for penaeid prawns and other coastal invertebrates from malaysia. Marine Biology 123:595–606.

    Article  Google Scholar 

  • NRC (National Research Council). 1992. Restoration of Aquatic Ecosystems. National Academic Press, Washington, DC, USA.

    Google Scholar 

  • Odum, E. P. 1969. The strategy of ecosystem development. Science 164:262–270.

    Article  CAS  PubMed  Google Scholar 

  • Pedersen, M. F. and J. Borum. 1996. Nutrient control of algal growth in estuarine waters: Nutrient limitation and the importance of nitrogen requirements and nitrogen storage among phytoplankton and species of macroalgae. Marine Ecological Progresse Series 142:261–272.

    Article  CAS  Google Scholar 

  • Piehler, M. F., C. A. Currin, R. Cassanova, and H. W. Paerl. 1998. Development and N-2-fixing activity of the benthic microbial community in transplanted Spartina alterniflora marshes in North Carolina. Restoration Ecology 6:290–296.

    Article  Google Scholar 

  • Pinckney, J. and R. G. Zingmark. 1991. Effects of tidal stage and sun angles on intertidal benthic microalgal productivity. Marine Ecological Progress Series 76:81–89.

    Article  Google Scholar 

  • Pinckney, J. and R. G. Zingmark. 1993a. Modeling the annul production of intertidal benthic microalgae in estuarine ecosystems. Journal of Phycology 29:396–407.

    Article  Google Scholar 

  • Pinckney, J. and R. G. Zingmark. 1993b. Biomass and production of benthic microalgal communities in estuarine habitats. Estuaries 16:887–897.

    Article  CAS  Google Scholar 

  • Pip, E. and G. G. C. Robinson. 1984. A comparison of algal periphyton composition on eleven species of submerged macrophytes. Hydrobiological Bulletin 18:109–118.

    Article  Google Scholar 

  • Pomeroy, L. R. and R. G. Wiegert. 1981. The Ecology of a Salt Marsh. Springer-Verlag, New York, NY, USA.

    Google Scholar 

  • Sacco, J. N., E. D. Seneca, and T. Wentworth. 1994. Infaunal community development of artificially established salt marshes in North Carolina. Estuaries 17:489–500.

    Article  Google Scholar 

  • Sage, W. W. and M. J. Sullivan. 1978. Distribution of bluegreen algae in a Mississippi gulf coast salt marsh. Journal of Phycology 14:333–337.

    Article  Google Scholar 

  • Scatolini, S. R. and J. B. Zedler. 1996. Epibenthic in vertebrates of natural and constructed marshes of San Diego Bay. Wetlands 16: 24–37.

    Google Scholar 

  • Short, F. T., D. M. Burdick, C. A. Short, R. C. Davis, and P. A. Morgan. 2000. Developing success criteria for restored eelgrass, salt marsh and mud flat habitats. Ecological Engineering 15:239–252.

    Article  Google Scholar 

  • Shubert, L. E. 1984. Algae as Ecological indicators. Academic Press, Inc., London, UK.

    Google Scholar 

  • Silliman, B. R. and M. D. Bertness. 2002. Atrophic cascade regulates salt marsh primary production. Proceedings of the National Academy of Sciences of the United States of America 99:10500–10505.

    Article  CAS  PubMed  Google Scholar 

  • Simenstad, C. A. and R. M. Thom. 1996. Functional equivalency trajectories of the restored Gog-Le-Hi-Te estuarine wetland. Ecological Applications 6:38–56.

    Article  Google Scholar 

  • Steneck, R. S. and M. N. Dethier. 1994. A functional group approach to the structure of algal-dominated communities. Oikos 69: 476–498.

    Article  Google Scholar 

  • Stevenson, R. J. 1990. Benthic algal community dynamics in a stream during and after a spate. The Journal of North American Benthological Society 9:277–288.

    Article  Google Scholar 

  • Stevenson, R. J. 2001. Using algae to assess wetlands with multivariate statistics, multimetric indices, and an ecological risk assessment framework. p. 113–140. In R. R. Rader, D. P. Batzer, and S. A. Wissinger (eds.) Biomonitoring and Management of North American Freshwater Wetlands. John Wiley and Sons, Inc., New York, NY, USA.

    Google Scholar 

  • Stevenson, R. J., P. V. McCormick, and R. Frydenborg. 2001. Use of algae to assess wetland condition: Using Algae to assess environmental conditions in wetlands. U.S. Environmental Protection Agency, Office of Water, Washington, DC, USA. EPA 843-B-00-002k.

    Google Scholar 

  • Stimson, J. and S. T. Larned. 2000. Nitrogen efflux from the sediments of a subtropical bay and the potential contribution to macroalgal nutrient requirements. Journal of Experimental Marine Biology and Ecology 252:159–180.

    Article  CAS  PubMed  Google Scholar 

  • Sullivan, M. J. 1975. Diatom communities from a Delaware salt marsh. Journal of Phycology 14:333–337.

    Google Scholar 

  • Sullivan, M. I. and C. A. Currin. 2000. Community structure and functional dynamics of benthic microalgae in salt marshes. p. 81–106. In M. P. Weinstein and D. A. Kreeger (eds.) Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publishers. Dordrecht, The Netherlands.

    Google Scholar 

  • Sullivan, M. J. and F. Daiber. 1975. Light, nitrogen and phosphorus limitation of edaphic algae in a Delaware salt marsh. Journal Of Experimental Marine Biology and Ecology: 18:79–88.

    Article  Google Scholar 

  • Sullivan, M. J. and C. A. Moncreiff. 1988. Primary production of edaphic algal communities in a Mississippi salt marsh. Journal of Phycology 24:49–58.

    Google Scholar 

  • Sullivan, M. J. and C. A. Moncreiff. 1990. Edaphic algae are an important component of salt-marsh food-webs-evidence from multiple stable isotope analyses. Marine Ecological Progress Series 62:149–159.

    Article  Google Scholar 

  • Teal, J. M. 1962. Energy flow in the salt marsh ecosystem of Georgia. Ecology 43:614–624.

    Article  Google Scholar 

  • ter Braak, C. J. F. 1987. CANOCO-a FORTRAN program for canonical community ordination by (partial)(detrended)(canonical) correspondence analysis, principle components analysis and redundancy analysis (versin 2.0). TNO Institute of Applied Computer Science, Wageningen, The Netherlands.

    Google Scholar 

  • ter Braak, C. J. F. 1990. Update Note: CANOCO v 3.1, Agricultural Mathmatics Group, Wageningen, The Netherlands.

    Google Scholar 

  • Underwood, G. J. C. 1997. Microalgal colonization in a saltmarsh restoration scheme. Estuarine Coastal and Shelf Science 44:471–481.

    Article  CAS  Google Scholar 

  • USEPA. 2002a. Methods for evaluating wetland condition, #7 wetlands classification, United States Environmental Protection Agency, Washington, DC, USA. EPA-822-R-02-017.

    Google Scholar 

  • USEPA. 2002b. Methods for evaluating wetland condition, #11 using algae to assess environmental conditions in wetlands. United States Environmental Protection Agency, Washington, DC, USA. EPA-822-R-02-021.

    Google Scholar 

  • van Raalte, C. D., I. Valiela, and J. M. Teal. 1976. Production of epibenthic salt marsh algae: light and nutrient limitation. Limnology and Oceanography 21:862–872.

    Article  Google Scholar 

  • van Wijnen, H. J., and J. P. Bakker. 1999. Nitrogen and phosphorus limitation in a coastal barrier salt marsh: the implications for vegetation succession. Journal of Ecology 87:265–272.

    Article  Google Scholar 

  • von Stosch, H. A. and B. E. F. Reimann. 1970. Subsilicea fragilarioide gen. Et spec. nov. eine Diatomee (Fragilariaceae) mit vorwiegend organischer membran. Nova Hedwigia 31:1–36.

    Google Scholar 

  • Wear, D. J., M. J. Sullivan, and A. D. Moore. 1999. Effects of water-column enrichment on the production dynamics of three seagrass species and their epiphytic algae. Marine Ecological Progress Series 179:201–213.

    Article  Google Scholar 

  • Yallop, M. L., B. Dewinder, D. M. Paterson, and L. J. Stal. 1994. Comparative structure, primary production and biogenic stabilization of cohesive and noncohesive marine-sediments inhabited by microphytobenthos. Estuarine Coastal and Shelf Science 39: 565–582.

    Article  Google Scholar 

  • Zajac, R. N. and R. B. Whitlatch. 2001. Response of macrobenthic communities to restoration efforts in a New England estuary. Estuaries 24:167–183.

    Article  Google Scholar 

  • Zedler, J. B. 1980. Algal mat productivity: comparisons in salt marsh. Estuaries 3:122–131.

    Article  Google Scholar 

  • Zedler, J. B. 1993. Canopy architecture of natural and planted cord-grass marshes: selecting habitat evaluation criteria. Ecological Application 3:123–138.

    Article  Google Scholar 

  • Zedler, J., T. Winfield, and D. Mauriello. 1978. Primary productivity in a Southern California estuary. p. 649–662. In Coastal Zone ’78. Symposium on Technical, Environmental, Socioeconomic and Regulatory Aspects of Coastal Zone Management, vol. 2. American Society of Civil Engineers, New York, NY, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, L., Stevenson, R.J. & Craft, C. Changes in benthic algal attributes during salt marsh restoration. Wetlands 24, 309–323 (2004). https://doi.org/10.1672/0277-5212(2004)024[0309:CIBAAD]2.0.CO;2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/0277-5212(2004)024[0309:CIBAAD]2.0.CO;2

Key words

Navigation