Skip to main content
Log in

Residual stress analysis and bow simulation of crystalline silicon solar cells

矽晶太阳能电池的翘曲模拟与残留应力分析

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

The pressure to reduce solar energy costs encourages efforts to reduce the thickness of silicon wafers. Thus, the cell bowing problem associated with the use of thin wafers has become increasingly important, as it can lead to the cracking of cells and thus to high yield losses. In this paper, a systematic approach for simulating the cell bowing induced by the firing process is presented. This approach consists of three processes: (1) the material properties are determined using a nanoidentation test; (2) the thicknesses of aluminum (Al) paste and silver (Ag) busbars and fingers are measured using scanning electron microscopy; (3) non-linear finite element analysis (FEA) is used for simulating the cell bowing induced by the firing process. As a result, the bowing obtained using FEA simulation agrees better with the experimental data than that using the bowing calculations suggested in literature. In addition, the total in-plane residual stress state in the wafer/cell due to the firing process can be determined using the FEA simulation. A detailed analysis of the firing-induced stress state in single crystalline silicon (sc-Si), cast, and edge-defined film-fed growth (EFG) multi-crystalline silicon wafers of different thicknesses is presented. Based on this analysis, a simple residual stress calculation is developed to estimate the maximum in-plane principal stress in the wafers. It is also proposed that the metallization pattern, Ag busbars and fingers screen printed on the front of a solar cell, can be designed using this approach. A practical case of a 3-busbar Si solar cell is presented.

抽象

目 的

建立一套系统的方法来模拟矽晶太阳能电池的翘曲行为, 进而分析因翘曲而产生的残留应力。

创新点

1. 利用纳米压痕实验及电子显微镜测量材料性质及结构尺寸, 帮助有限元分析更准确地模拟太阳能电池的翘曲行为; 2. 提出了2 个针对不同矽晶太阳能电池因翘曲产生的简易残留应力的计算公式。

方 法

1. 利用纳米压痕实验测量铝胶及银胶的材料性质, 使用电子显微镜测量铝胶及银胶的结构尺寸; 2. 建立非线性有限元分析模型并与实验结果进行比较(图6), 得出不同矽晶太阳能电池残留应力分布结果(图7); 3. 将简易残留应力公式(公式(6)和(7))和有限元分析得到的结果进行比较(图9)。

结 论

1. 建立了一套有效模拟矽晶太阳能电池翘曲行为的分析方法, 该方法包含3 个部分: (1)纳米压痕实验测量铝胶和银胶的材料性质; (2)电子显微镜测量细部结构尺寸; (3)非线性有限元分析。利用此方法模拟的翘曲行为较其它计算方法更贴近实验结果。2. 该方法不仅能分析不同矽晶太阳能电池的翘曲行为, 而且能提供除了翘曲以外的其它信息, 比如残留应力。本文提出了2个较为简易的残留应力计算公式, 计算不同矽晶太阳能电池因翘曲而产生的残留应力。3. 方法考虑了银胶对矽晶太阳能电池翘曲的影响, 在实际应用中可以帮助分析不同银胶的网印方式对矽晶太阳能电池翘曲的影响。本文以帮助某公司设计太阳能电池为例, 证明了利用该分析方法在实际应用中帮助公司分析银胶网印的可行性。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bähr, M., Dauwe, S., Lawerenz, A., et al., 2005. Comparison of bow-avoiding Al pastes for thin, large-area crystalline silicon solar cells. 20th European Photovoltaic Solar Energy Conference and Exhibition, p.926–929.

    Google Scholar 

  • Best, S.R., Hess, D.P., Belyaev, A., et al., 2006. Audible vibration diagnostics of thermo-elastic residual stress in multi-crystalline silicon wafers. Applied Acoustics, 67(6): 541–549. http://dx.doi.org/10.1016/j.apacoust.2005.09.004

    Article  Google Scholar 

  • Bittoni, L., Calvelli, R., Butturi, M.A., et al., 2006. Aluminium pastes suitable for wide range thin crystalline silicon solar cells processing. Blistering and bowing effects reduction. 21st European Photovoltaic Solar Energy Conference and Exhibition, p.818–821.

    Google Scholar 

  • Brito, M.C., Maia Alves, J., Serra, J.M., et al., 2005a. Measurement of residual stress in EFG ribbons using a phase-shifting IR photoelastic method. Solar Energy Materials and Solar Cells, 87(1-4):311–316. http://dx.doi.org/10.1016/j.solmat.2004.07.028

    Article  Google Scholar 

  • Brito, M.C., Pereira, J.P., Maia Alves, J., et al., 2005b. Measurement of residual stress in multicrystalline silicon ribbons by a self-calibrating infrared photoelastic method. Review of Scientific Instruments, 76(1):013901. http://dx.doi.org/10.1063/1.1823654

    Article  Google Scholar 

  • Brown, G.R., Levine, R.A., Shaikh, A., et al., 2009. Threedimensional solar cell finite-element sintering simulation. Journal of the American Ceramic Society, 92(7):1450–1455. http://dx.doi.org/10.1111/j.1551-2916.2009.03120.x

    Article  Google Scholar 

  • Brun, X.F., Melkote, S.N., 2009. Analysis of stresses and breakage of crystalline silicon wafers during handling and transport. Solar Energy Materials and Solar Cells, 93(8): 1238–1247. http://dx.doi.org/10.1016/j.solmat.2009.01.016

    Article  Google Scholar 

  • Funke, C., Kullig, E., Kuna, M., et al., 2004. Biaxial fracture test of silicon wafers. Advanced Engineering Materials, 6(7):594–598. http://dx.doi.org/10.1002/adem.200400406

    Article  Google Scholar 

  • He, S., Danyluk, S., 2006. Residual stresses in polycrystalline silicon sheet and their relation to electron-hole lifetime. Applied Physics Letters, 89(11):111909. http://dx.doi.org/10.1063/1.2354308

    Article  Google Scholar 

  • He, S., Zheng, T., Danyluk, S., 2004. Analysis and determination of the stress-optic coefficients of thin single crystal silicon samples. Journal of Applied Physics, 96(6):3103–3109. http://dx.doi.org/10.1063/1.1774259

    Article  Google Scholar 

  • Hilali, M.M., Gee, J.M., Hacke, P., 2007. Bow in screen-printed back-contact industrial silicon solar cells. Solar Energy Materials and Solar Cells, 91(13):1228–1233. http://dx.doi.org/10.1016/j.solmat.2007.04.010

    Article  Google Scholar 

  • Huster, F., 2005a. Aluminium-back surface field: bow investigation and elimination. 20th European Photovoltaic Solar Energy Conference and Exhibition, p.635–638.

    Google Scholar 

  • Huster, F., 2005b. Investigation of the alloying process of screen printed aluminium pastes for the BSF formation on silicon solar cells. 20th European Photovoltaic Solar Energy Conference and Exhibition, p.1466–1469.

    Google Scholar 

  • ISO (International Organization for Standardization), 2015. Metallic Materials–Instrumented Indentaion Test for Hardness and Materials Parameters, ISO 14577-1:2015. ISO, Geneva.

  • Li, F., Garcia, V., Danyluk, S., 2006. Full field stress measurements in thin silicon sheet. Proceedings of the Fourth World Conference on Photovoltaic Energy Conversion, 1:363–368. http://dx.doi.org/10.1109/WCPEC.2006.279425

    Google Scholar 

  • Möller, H.J., Funke, C., Rinio, M., et al., 2005. Multicrystalline silicon for solar cells. Thin Solid Films, 487(1-2): 179–187. http://dx.doi.org/10.1016/j.tsf.2005.01.061

    Article  Google Scholar 

  • Saha, R., Nix, W.D., 2002. Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Materialia, 50(1):23–38. http://dx.doi.org/10.1016/S1359-6454(01)00328-7

    Article  Google Scholar 

  • Schneider, A., Gerhards, C., Huster, F., et al., 2001. Al BSF for thin screen-printed multi-crystalline Si solar cells. 17th European Photovoltaic Solar Energy Conference and Exhibition, p.1768–1771.

    Google Scholar 

  • Yasutake, K., Uemno, M., Kawabe, H., et al., 1982. Measurement of residual stress in bent silicon wafers by means of photoluminescence. Japanese Journal of Applied Physics, 21(12):1715–1719. http://dx.doi.org/10.1143/JJAP.21.1715

    Article  Google Scholar 

  • Yu, L., Jiang, Y., Lu, S., et al., 2012. 3D FEM for sintering of solar cell with boron back surface field based on Solidwork Simulation. International Conference on Mechanical, Industrial, and Manufacturing Engineering, p.81–86.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsuan-Teh Hu.

Additional information

ORCID: Hsuan-Teh HU, http://orcid.org/0000-0001-8582-0670

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, CH., Hu, HT., Lin, FM. et al. Residual stress analysis and bow simulation of crystalline silicon solar cells. J. Zhejiang Univ. Sci. A 18, 49–58 (2017). https://doi.org/10.1631/jzus.A1500279

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A1500279

Keywords

关键词

CLC number

CLC number

Navigation