Skip to main content
Log in

Modeling the Performance of Biaxially-Textured Silicon Solar Cells

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Grain boundaries (GBs) in polycrystalline silicon (poly-Si) thin film solar cells are frequently found to be detrimental for device performance. Biaxiallytextured silicon with grains that are well-aligned in-plane and out-of-plane can possess fewer GB defects. In this work, we use TCAD Sentaurus device simulator and known experimental work to investigate and quantify the potential performance gains of biaxially-textured silicon. Simulation shows there can be performance gain from well-aligned grains when GB defects dominate carrier recombination or when grains are small. On the other hand, when intra-grain defects dominate recombination and grains are large, well-aligned grains do not lead to much performance gain. Another important result from our simulation is when intra-grain and GB defects are few, Jsc is almost independent of grain size while Voc drops with decreasing grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.R. Groves, J.B. Li, B.M. Clemens, V. LaSalvia, F. Hasoon, H.M. Branz, C.W. Teplin, Energy Environ. Sci. 5, 6905 (2012).

    Article  CAS  Google Scholar 

  2. J. Groves, G. Hayes, J. Li, {etet al.} in Amorphous and Polycrystalline Thin-Film Silicon Science and Technology, (Mater. Res. Soc. Proc. 1245, San Francisco, CA, 2010) pp. 1245–A20–06.

  3. C.W. Teplin, D.S. Ginley, H.M. Branz, J Non-Cryst Solids 352, 984 (2006).

    Article  CAS  Google Scholar 

  4. S.H. Wee, C. Cantoni, T.R. Fanning, C.W. Teplin, D.F. Bogorin, J. Bornstein, K. Bowers, P. Schroeter, F. Hasoon, H.M. Branz, M.P. Paranthaman, A. Goyal, Energy Environ. Sci. 5, 6052 (2012).

    Article  CAS  Google Scholar 

  5. V. Selvamanickam, S. Sambandam, A. Sundaram, S. Lee, X. Xiong, (Photovoltaic Specialists Conference, Philadelphia, PA, 2009) pp. 000650–000654.

  6. V. Selvamanickam, S. Sambandam, A. Sundaram, R. Wang, G. Majkic, (Photovoltaic Specialists Conference, Seattle, WA, 2011) pp. 003385–003389.

  7. V. Selvamanickam, S. Sambandam, A. Sundaram, S. Lee, A. Rar, X. Xiong, A. Alemu, C. Boney, A. Freundlich, Journal of Crystal Growth 311, 4553 (2009).

    Article  CAS  Google Scholar 

  8. V. Selvamanickam, C. Jian, X. Xiong, G. Majkic, E. Galtsyan, (Photovoltaic Specialists Conference, Austin, TX, 2012) pp. 002592–002595.

  9. A.T. Findikoglu, W. Choi, V. Matias, T.G. Holesinger, Q.X. Jia, D.E. Peterson, Adv. Mater. 17, 1527 (2005).

    Article  CAS  Google Scholar 

  10. W. Choi, A.T. Findikoglu, M.J. Romero, M. Al-Jassim, Journal of Materials Research 22, 821 (2007).

    Article  CAS  Google Scholar 

  11. C.W. Teplin, D.S. Ginley, M. van Hest, J.D. Perkins, 2005 DOE Solar Energy Technologies Program Review Meeting, Denver, CO, 2005.

  12. S.A. Edmiston, G. Heiser, A.B. Sproul, M.A. Green, J Appl Phys 80, 6783 (1996).

    Article  CAS  Google Scholar 

  13. M.G. Deceglie, M.D. Kelzenberg, H.A. Atwater, (Photovoltaic Specialists Conference, Honolulu, HI, 2010) pp. 001487–001490.

  14. A. Wangperawong, S.F. Bent, Appl Phys Lett 98, 233106 (2011).

    Article  Google Scholar 

  15. T. Fujisaki, A. Yamada, M. Konagai, Solar Energy Materials and Solar Cells 74, 331 (2002).

    Article  CAS  Google Scholar 

  16. K.-I. Kurobe, Y. Ishikawa, Y. Yamamoto, T. Fuyuki, H. Matsunami, Solar Energy Materials and Solar Cells 65, 201 (2001).

    Article  CAS  Google Scholar 

  17. M.A. Green, Appl. Phys. A 96, 153 (2009).

    Article  CAS  Google Scholar 

  18. A. Aberle, (World Conference on Photovoltaic Energy Conference, Waikoloa, HI, 2006) pp. 1481–1484.

  19. A.G. Aberle, Journal of Crystal Growth 287, 386 (2006).

    Article  CAS  Google Scholar 

  20. C. Gaire, P.C. Clemmer, H.F. Li, T.C. Parker, P. Snow, I. Bhat, S. Lee, G.C. Wang, T.M. Lu, Journal of Crystal Growth 312, 607 (2010).

    Article  CAS  Google Scholar 

  21. C. Gaire, P. Snow, T.-L. Chan, W. Yuan, M. Riley, Y. Liu, S.B. Zhang, G.C. Wang, T.M. Lu, Nanotechnology 21, 445701 (2010).

    Article  CAS  Google Scholar 

  22. W. Yuan, F. Tang, H.F. Li, T. Parker, N. LiCausi, T.M. Lu, I. Bhat, G.C. Wang, S. Lee, Thin Solid Films 517, 6623 (2009).

    Article  CAS  Google Scholar 

  23. H.F. Li, T. Parker, F. Tang, G.C. Wang, T.M. Lu, S. Lee, Journal of Crystal Growth 310, 3610 (2008).

    Article  CAS  Google Scholar 

  24. C.A. Dimitriadis, D.H. Tassis, N.A. Economou, A.J. Lowe, J Appl Phys 74, 2919 (1993).

    Article  CAS  Google Scholar 

  25. I. Yamamoto, H. Kuwano, Y. Saito, J Appl Phys 71, 3350 (1992).

    Article  CAS  Google Scholar 

  26. W.B. Jackson, N.M. Johnson, D.K. Biegelsen, Appl Phys Lett 43, 195 (1983).

    Article  CAS  Google Scholar 

  27. G. Baccarani, B. Ricco, G.J.O.A.P. Spadini, J Appl Phys 49, 5565 (1978).

    Article  CAS  Google Scholar 

  28. J.Y.W. Seto, J Appl Phys 46, 5247 (1975).

    Article  CAS  Google Scholar 

  29. Y. Saito, I. Mizushima, H. Kuwano, J Appl Phys 57, 2010 (1985).

    Article  CAS  Google Scholar 

  30. P.P. Altermatt, G. Heiser, J Appl Phys 91, 4271 (2002).

    Article  CAS  Google Scholar 

  31. J.G. Fossum, F.A. Lindholm, IEEE Trans. Electron Devices 27, 692 (1980).

    Article  Google Scholar 

  32. J. Nelson, The Physics of Solar Cells, Imperial College Press, Singapore, 2010.

    Google Scholar 

  33. M.R. Murti, K.V. Reddy, J Appl Phys 70, 3683 (1991).

    Article  CAS  Google Scholar 

  34. C. Hässler, G. Pensl, M. Schulz, A. Voigt, H.P. Strunk, Prog. Photovolt: Res. Appl. 137, 463 (1993).

    Google Scholar 

  35. J. Palm, Prog. Photovolt: Res. Appl. 74, 1169 (1993).

    CAS  Google Scholar 

  36. E.S. Yang, E. Poon, H.L. Evans, W. Hwang, J.S. Song, C.M. Wu, edited by C.C. Tang, (Laser Processing of Semiconductor Devices, 59, Los Angeles, CA, 1983) pp. 59–64.

    Article  Google Scholar 

  37. A. Pecora, M. Schillizzi, G. Tallarida, G. Fortunato, C. Reita, P. Migliorato, Solid-State Electronics 38, 845 (1995).

    Article  CAS  Google Scholar 

  38. W. Choi, V. Matias, J.-K. Lee, A.T. Findikoglu, Appl Phys Lett 87, 152104 (2005).

    Article  Google Scholar 

  39. C.A. Dimitriadis, Solid State Commun 56, 925 (1985).

    Article  CAS  Google Scholar 

  40. L. Carnel, I. Gordon, D. Van Gestel, G. Beaucarne, J. Poortmans, A. Stesmans, J Appl Phys 100, 063702 (2006).

    Article  Google Scholar 

  41. D. Van Gestel, M.J. Romero, I. Gordon, L. Carnel, J. D’Haen, G. Beaucarne, M. Al-Jassim, J. Poortmans, Appl Phys Lett 90, 092103 (2007).

    Article  Google Scholar 

  42. D. Van Gestel, I. Gordon, H. Bender, D. Saurel, J. Vanacken, G. Beaucarne, J. Poortmans, J Appl Phys 105, 114507 (2009).

    Article  Google Scholar 

  43. M. Fehr, P. Simon, T. Sontheimer, C. Leendertz, B. Gorka, A. Schnegg, B. Rech, K. Lips, Appl Phys Lett 101, 123904 (2012).

    Article  Google Scholar 

Download references

Acknowledgments

Joel Bingrui Li thanks the National Research Foundation (NRF), Singapore for his Ph.D. Scholarship.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J.B., Clemens, B.M. Modeling the Performance of Biaxially-Textured Silicon Solar Cells. MRS Online Proceedings Library 1670, 36–44 (2014). https://doi.org/10.1557/opl.2014.590

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2014.590

Navigation