Skip to main content

Advertisement

Log in

Energy storage techniques, applications, and recent trends: A sustainable solution for power storage

  • Review
  • Published:
MRS Energy & Sustainability Aims and scope Submit manuscript

Abstract

Energy is essential in our daily lives to increase human development, which leads to economic growth and productivity. In recent national development plans and policies, numerous nations have prioritized sustainable energy storage. To promote sustainable energy use, energy storage systems are being deployed to store excess energy generated from renewable sources. Energy storage provides a cost-efficient solution to boost total energy efficiency by modulating the timing and location of electric energy generation and consumption. The purpose of this study is to present an overview of energy storage methods, uses, and recent developments. The emphasis is on power industry-relevant, environmentally friendly energy storage options. It discusses the various energy storage options available, including batteries, flywheels, thermal storage, pumped hydro storage, and many others. It also discusses how these technologies are used in the power sector and their benefits and drawbacks. The utilization of a Vanadium Redox Flow Battery in hybrid propulsion systems for marine applications, as well as the creation of a high energy density portable/mobile hydrogen energy storage system with an electrolyzer, a metal hydride, and a fuel cell are both covered in detail with a case study. The difficulties and prospects of each system, as well as the potential for further growth, are covered in detail in two case studies. The results of this study suggest that these technologies can be viable alternatives to traditional fuel sources, especially in remote areas and applications where the need for low-emission, unwavering, and cost-efficient energy storage is critical.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. R. Shah, & N. Pai, State of the art of CO2-recycled fuels: a new frontier for alternative energy technologies. Fuel (2022).

  2. J. Mitali, S. Dhinakaran, A.A. Mohamad, Energy storage systems: a review. Energy Stor. Saving (2022). https://doi.org/10.1016/j.enss.2022.07.002

    Article  Google Scholar 

  3. R. Bessa, C. Moreira, B. Silva, M. Matos, Handling renewable energy variability and uncertainty in power systems operation. Wiley Interdiscip. Rev.: Energy Environ. 3(2), 156–178 (2014). https://doi.org/10.1002/wene.76

    Article  Google Scholar 

  4. E.E. Michaelides, Transition to renewable energy for communities: energy storage requirements and dissipation. Energies 15(16), 5896 (2022). https://doi.org/10.3390/en15165896

    Article  CAS  Google Scholar 

  5. H. Golmohamadi, Demand-side flexibility in power systems: a survey of residential, industrial, commercial, and agricultural sectors. Sustainability 14(13), 7916 (2022). https://doi.org/10.3390/su14137916

    Article  CAS  Google Scholar 

  6. G.B. Kumar, R.K. Sarojini, K. Palanisamy, S. Padmanaban, J.B. Holm-Nielsen, Large scale renewable energy integration: issues and solutions. Energies 12(10), 1996 (2019). https://doi.org/10.3390/en12101996

    Article  Google Scholar 

  7. O. Shavolkin, I. Shvedchykova, M. Kolcun, D. Medved’, Improvement of the grid-tied solar-wind system with a storage battery for the self-consumption of a local object. Energies 15(14), 5114 (2022). https://doi.org/10.3390/en15145114

    Article  CAS  Google Scholar 

  8. R. Sharan, Flexible generation and flexible load for large integration of renewable generation into the grid, in ISUW 2019. ed. by R.K. Pillai, A. Dixit, S. Dhapre (Springer, Singapore, 2022), pp.197–202

    Chapter  Google Scholar 

  9. S. Hajiaghasi, A. Salemnia, M. Hamzeh, Hybrid energy storage system for microgrids applications: a review. J. Energy Stor. 21, 543–570 (2019). https://doi.org/10.1016/j.est.2018.12.017

    Article  Google Scholar 

  10. J.I. Leon, E. Dominguez, L. Wu, A.M. Alcaide, M. Reyes, J. Liu, Hybrid energy storage systems: concepts, advantages, and applications. IEEE Ind. Electron. Mag. 15(1), 74–88 (2020). https://doi.org/10.1109/MIE.2020.3016914

    Article  Google Scholar 

  11. R. Cohen, P.C. Eames, G.P. Hammond, M. Newborough, B. Norton, Briefing: the 2021 Glasgow climate pact: steps on the transition pathway towards a low carbon world. Proc. Inst. Civ. Eng.-Energy 175(3), 97–102 (2022). https://doi.org/10.1680/jener.22.00011

    Article  Google Scholar 

  12. J.L. Holechek, H.M. Geli, M.N. Sawalhah, R. Valdez, A global assessment: can renewable energy replace fossil fuels by 2050? Sustainability 14(8), 4792 (2022). https://doi.org/10.3390/su14084792

    Article  Google Scholar 

  13. S. Ding, J. Zeng, Z. Hu, Y. Yang, IOT-based social-economic management of distribution system with the high penetration of renewable energy sources. Sustain. Cities Soc. 76, 103439 (2022). https://doi.org/10.1016/j.scs.2021.103439

    Article  Google Scholar 

  14. V. Pandey, A. Sircar, N. Bist, K. Solanki, K. Yadav, Accelerating the renewable energy sector through Industry 4.0: optimization opportunities in the digital revolution. Int. J. Innov. Stud. 7(2), 171–188 (2023). https://doi.org/10.1016/j.ijis.2023.03.003

    Article  Google Scholar 

  15. T. Ahmad, H. Zhu, D. Zhang, R. Tariq, A. Bassam, F. Ullah, S.S. Alshamrani, Energetics systems and artificial intelligence: applications of industry 4.0. Energy Rep. 8, 334–361 (2022). https://doi.org/10.1016/j.egyr.2021.11.256

    Article  Google Scholar 

  16. F. Nasiri, R. Ooka, F. Haghighat, N. Shirzadi, M. Dotoli, R. Carli, S. Sadrizadeh, Data analytics and information technologies for smart energy storage systems: a state-of-the-art review. Sustain. Cities Soc. (2022). https://doi.org/10.1016/j.scs.2022.104004

    Article  Google Scholar 

  17. R. Singh, S.V. Akram, A. Gehlot, D. Buddhi, N. Priyadarshi, B. Twala, Energy system 4.0: digitalization of the energy sector with inclination towards sustainability. Sensors 22(17), 6619 (2022). https://doi.org/10.3390/s22176619

    Article  CAS  Google Scholar 

  18. S.K. Fayegh, M.A. Rosen, A review of energy storage types, applications and recent developments. J. Energy Stor. 27, 101047 (2020). https://doi.org/10.1016/j.est.2019.101047

    Article  Google Scholar 

  19. J. Mitali, S. Dinakaran, A.A. Mohamad, Energy storage systems: a review. Energy Stor. Saving 1(3), 166–216 (2022). https://doi.org/10.1016/j.enss.2022.07.002

    Article  CAS  Google Scholar 

  20. H.A. Behabtu, M. Messagie, T. Coosemans, M. Berecibar, K.A. Fante, A.A. Kebede, J.V. Mierlo, A review of energy storage technologies’ application potentials in renewable energy sources grid integration. Sustainability 12(24), 10511 (2020). https://doi.org/10.3390/su122410511

    Article  CAS  Google Scholar 

  21. E. Hossain, M.R.F. Hossain, M.S.H. Sunny, N. Mohammad, N. Nawar, A comprehensive review on energy storage systems: types, comparison, current scenario, applications, barriers, and potential solutions, policies, and future prospects. Energies 13(14), 3651 (2020). https://doi.org/10.3390/en13143651

    Article  CAS  Google Scholar 

  22. IRENA, Renewable Energy Statistics 2022, The International Renewable Energy Agency, Abu Dhabi (2022), https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2022/Apr/IRENA_RE_Capacity_Statistics_2022.pdf.

  23. M.E. Rajvikram, S. Gm, P. Sanjeevikumar, M.K. Nallapaneni, A. Annapurna, M.V. Ajayragavan, M.P. Lucian, B.H.N. Jens, A comprehensive review on renewable energy development, challenges, and policies of leading Indian states with an international perspective. IEEE Acess (2020). https://doi.org/10.1109/ACCESS.2020.2988011

    Article  Google Scholar 

  24. Central Electricity Authority (CEA), Power sector at a Glance All India—Ministry of Power (2022), https://powermin.gov.in/en/content/power-sector-glance-all-India. Accessed 4 Jan 2023

  25. M.S. Whittingham, History, evolution, and future status of energy storage. Proc. IEEE (2012). https://doi.org/10.1109/JPROC.2012.2190170

    Article  Google Scholar 

  26. V. V. Quaschning, Renewable energy and climate change, (Wiley, 2019).

  27. P. Manimekalai, S. Ravi, M. Ravichandran, R.A. Raj, Review of current status of fossil fuel, renewable energy and storage devices: context Bangladesh. Int. Energy J. 20(3A), 439–452 (2020)

    Google Scholar 

  28. S. Alhasan, R. Carriveau, D.K. Ting, A review of adsorbed natural gas storage technologies. Int. J. Environ. Stud. 73(3), 343–356 (2016). https://doi.org/10.1080/00207233.2016.1165476

    Article  CAS  Google Scholar 

  29. B. Koçak, A.I. Fernandez, H. Paksoy, Review on sensible thermal energy storage for industrial solar applications and sustainability aspects. Sol. Energy 209, 135–169 (2020). https://doi.org/10.1016/j.solener.2020.08.081

    Article  Google Scholar 

  30. G. Li, Sensible heat thermal storage energy and exergy performance evaluations. Renew. Sustain. Energy Rev. 53, 897–923 (2016). https://doi.org/10.1016/j.rser.2015.09.006

    Article  CAS  Google Scholar 

  31. A. Khademi, K. Shank, S.A.A. Mehrjardi, S. Tiari, G. Sorrentino, Z. Said, S. Ushak, A brief review on different hybrid methods of enhancement within latent heat storage systems. J. Energy Stor. 54, 105362 (2022). https://doi.org/10.1016/j.est.2022.105362

    Article  Google Scholar 

  32. S.D. Sharma, K. Sagara, Latent heat storage materials and systems: a review. Int. J. Green Energy 2(1), 1–56 (2005). https://doi.org/10.1081/GE-200051299

    Article  CAS  Google Scholar 

  33. H. Mehling, S. Hiebler, F. Ziegler, Latent heat storage using a PCM-graphite composite material. In Proceedings of TERRASTOCK, (2000) p. 1

  34. J. Lin, Q. Zhao, H. Huang, H. Mao, Y. Liu, Y. Xiao, Applications of low-temperature thermochemical energy storage systems for salt hydrates based on material classification: a review. Sol. Energy 214, 149–178 (2021). https://doi.org/10.1016/j.solener.2020.11.055

    Article  CAS  Google Scholar 

  35. H. Kerskes, B. Mette, F. Bertsch, S. Asenbeck, and H. Drück, Development of a thermo-chemical energy storage for solar thermal applications. In Proceedings. ISES, Solar world congress proceedings (2011).

  36. B. Wu, W. Lu, A consistently coupled multiscale mechanical–electrochemical battery model with particle interaction and its validation. J. Mech. Phys. Solids 125, 89–111 (2019). https://doi.org/10.1016/j.jmps.2018.12.005

    Article  CAS  Google Scholar 

  37. J.P. Hoffstaedt, D.P.K. Truijen, J. Fahlbeck, L.H.A. Gans, M. Qudaih, A.J. Laguna, J.D. Bricker, Low-head pumped hydro storage: a review of applicable technologies for design, grid integration, control and modelling. Renew. Sustain. Energy Rev. 158, 112119 (2022). https://doi.org/10.1016/j.rser.2022.112119

    Article  Google Scholar 

  38. V. Pandey, A. Sircar, K. Yadav, N. Bist, Pumped hydro storage for intermittent renewable energy: present status and future potential in India. MRS Energy Sustain. (2023). https://doi.org/10.1557/s43581-023-00064-0

    Article  Google Scholar 

  39. R.J. Mahfoud, N.F. Alkayem, Y. Zhang, Y. Zheng, Y. Sun, H.H. Alhelou, Optimal operation of pumped hydro storage-based energy systems: a compendium of current challenges and future perspectives. Renew. Sustain. Energy Rev. 178, 113267 (2023). https://doi.org/10.1016/j.rser.2023.113267

    Article  Google Scholar 

  40. A. Emrani, A. Berrada, M. Bakhouya, Optimal sizing and deployment of gravity energy storage system in hybrid PV-wind power plant. Renew. Energy 183, 12–27 (2022). https://doi.org/10.1016/j.renene.2021.10.072

    Article  Google Scholar 

  41. J.D. Hunt, B. Zakeri, J. Jurasz, W. Tong, P.B. Dąbek, R. Brandão, E.R. Patro, B. Đurin, W.L. Filho, Y. Wada, B.V. Ruijven, Underground gravity energy storage: a solution for long-term energy storage. Energies 16(2), 825 (2023). https://doi.org/10.3390/en16020825

    Article  Google Scholar 

  42. E. Bazdar, M. Sameti, F. Nasiri, F. Haghighat, Compressed air energy storage in integrated energy systems: a review. Renew. Sustain. Energy Rev. 167, 112701 (2022). https://doi.org/10.1016/j.rser.2022.112701

    Article  Google Scholar 

  43. X. Zhang, Y. Li, Z. Gao, S. Chen, Y. Xu, H. Chen, Overview of dynamic operation strategies for advanced compressed air energy storage. J. Energy Stor. 66, 107408 (2023). https://doi.org/10.3390/thermo3010008

    Article  Google Scholar 

  44. M. De las Nieves Camacho, D. Jurburg, M. Tanco, Hydrogen fuel cell heavy-duty trucks: review of main research topics. Int. J. Hydrog. Energy (2022). https://doi.org/10.1016/j.ijhydene.2022.06.271

    Article  Google Scholar 

  45. A. Boretti, Supply of abundant and low-cost total primary energy to a growing world needs nuclear energy and hydrogen energy storage. Int. J. Hydrogen Energy 48(5), 1649–1650 (2023). https://doi.org/10.1021/acsenergylett.2c00994

    Article  CAS  Google Scholar 

  46. D. Lemian, F. Bode, Battery-supercapacitor energy storage systems for electrical vehicles: a review. Energies 15(15), 5683 (2022). https://doi.org/10.3390/en15155683

    Article  CAS  Google Scholar 

  47. P. Thomas, C.W. Lai, M.R.B. Johan, Recent developments in biomass-derived carbon as a potential sustainable material for super-capacitor-based energy storage and environmental applications. J. Anal. Appl. Pyrol. 140, 54–85 (2019). https://doi.org/10.1016/j.jaap.2019.03.021

    Article  CAS  Google Scholar 

  48. H. Zhang, D. Lin, D. Wang, J. Shi, B. Zhu, S. Ma, Y. Pan, Design and control of a new power conditioning system based on superconducting magnetic energy storage. J. Energy Stor. 51, 104359 (2022). https://doi.org/10.1016/j.est.2022.104359

    Article  Google Scholar 

  49. B.B. Adetokun, O. Oghorada, S.J.A. Abubakar, Superconducting magnetic energy storage systems: prospects and challenges for renewable energy applications. J. Energy Stor. 55, 105663 (2022). https://doi.org/10.1016/j.est.2022.105663

    Article  Google Scholar 

  50. C. Salvini, A. Giovannelli, Techno-economic comparison of diabetic CAES with artificial air reservoir and battery energy storage systems. Energy Rep. 8, 601–607 (2022). https://doi.org/10.1016/j.egyr.2022.03.170

    Article  Google Scholar 

  51. K. Susuki, J. Allen, & J. S. Chen, Neural Network Enhanced RKPM for Electrochemical-Mechanical Coupled Damage Modelling of Energy Storage Materials (No. NREL/PR-2C00-86332). National Renewable Energy Laboratory (NREL), Golden, CO (United States) (2023).

  52. J.O. Lee, Y.S. Kim, Novel battery degradation cost formulation for optimal scheduling of battery energy storage systems. Int. J. Electr. Power & Energy Syst. 137, 107795 (2022). https://doi.org/10.1016/j.ijepes.2021.107795

    Article  Google Scholar 

  53. J. Figgener, P. Stenzel, K.P. Kairies, J. Linßen, D. Haberschusz, O. Wessels, G. Angenendt, M. Robinius, D. Stolten, D.U. Sauer, The development of stationary battery storage systems in Germany–a market review. J. Energy Stor. 29, 101153 (2020). https://doi.org/10.1016/j.est.2020.101982

    Article  Google Scholar 

  54. S. Comello, S. Reichelstein, The emergence of cost effective battery storage. Nat. Commun. 10(1), 2038 (2019). https://doi.org/10.1038/s41467-019-09988-z

    Article  CAS  Google Scholar 

  55. M.R. Chakraborty, S. Dawn, P.K. Saha, J.B. Basu, T.S. Ustun, A comparative review on energy storage systems and their application in deregulated systems. Batteries 8(9), 124 (2022). https://doi.org/10.3390/batteries8090124

    Article  CAS  Google Scholar 

  56. D. Xin, J. Li, C.A. Liu, Research on the application and control strategy of energy storage in rail transportation. World Electr. Veh. J. 14(1), 3 (2022). https://doi.org/10.3390/wevj14010003

    Article  Google Scholar 

  57. A.A. Kebede, T. Kalogiannis, J. Van Mierlo, M. Berecibar, A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration. Renew. Sustain. Energy Rev. 159, 112213 (2022). https://doi.org/10.1016/j.rser.2022.112213

    Article  CAS  Google Scholar 

  58. F. Desai, J.S. Prasad, P. Muthukumar, M.M. Rahman, Thermochemical energy storage system for cooling and process heating applications: a review. Energy Convers. Manag. 229, 113617 (2021). https://doi.org/10.1016/j.enconman.2020.113617

    Article  CAS  Google Scholar 

  59. K. Faraj, M. Khaled, J. Faraj, F. Hachem, C. Castelain, Phase change material thermal energy storage systems for cooling applications in buildings: a review. Renew. Sustain. Energy Rev. 119, 109579 (2020). https://doi.org/10.1016/j.rser.2019.109579

    Article  Google Scholar 

  60. K. Kant, R. Pitchumani, Advances and opportunities in thermochemical heat storage systems for buildings applications. Appl. Energy 321, 119299 (2022). https://doi.org/10.1016/j.apenergy.2022.119299

    Article  CAS  Google Scholar 

  61. H.B. Dizaji, H. Hosseini, A review of material screening in pure and mixed-metal oxide thermochemical energy storage (TCES) systems for concentrated solar power (CSP) applications. Renew. Sustain. Energy Rev. 98, 9–26 (2018). https://doi.org/10.1016/j.rser.2018.09.004

    Article  CAS  Google Scholar 

  62. X. Li, A. Palazzolo, A review of flywheel energy storage systems: state of the art and opportunities. J. Energy Stor. 46, 103576 (2022). https://doi.org/10.1016/j.est.2021.103576

    Article  Google Scholar 

  63. A. Blakers, M. Stocks, B. Lu, C. Cheng, A review of pumped hydro energy storage. Prog. Energy 3(2), 022003 (2021). https://doi.org/10.1088/2516-1083/abeb5b

    Article  Google Scholar 

  64. R. Schlögl, 4 chemical energy storage and conversion: a perspective. Chem. Energy Stor. (2022). https://doi.org/10.1515/9783110608458

    Article  Google Scholar 

  65. N. Kumar, Artificial intelligence and machine learning applications in energy storage system: technology overview and perspectives. Emerg. Trends Energy Stor. Syst. Indus. App. (2023), pp.1–26.

  66. E. Nourafkan, H. Esmaeili, W. Ahmed, Recent developments in chemical energy storage. Emerg. Nanotechnol. Renew. Energy (2021). https://doi.org/10.1016/B978-0-12-821346-9.00007-9

    Article  Google Scholar 

  67. T.R. Shripad, Chemical Energy Storage. Stor. Hybridization of Nuclear Energy (2019). https://doi.org/10.1016/B978-0-12-813975-2.00006-5

    Article  Google Scholar 

  68. O.S. Bushuyev et al., What should we make with CO2 and how can we make it? (2018) https://www.osti.gov/pages/servlets/purl/1433477#:~:text=The%20electrochemical%20conversion%20of%20CO2,using%20water%20and%20renewable%20electricity. Accessed 3 April 2023

  69. J. Amouroux et al., Carbon dioxide: a new material for energy storage. Prog. Nat. Sci.: Mater. Int. 24(4), 295–304 (2014)

    Article  CAS  Google Scholar 

  70. J. Islam et al., Electrochemical nitrogen fixation in metal-N2 batteries: a paradigm for simultaneous NH3 synthesis and energy generation. Energy Stor. Mater. (2022).

  71. D. Bao, Q. Zhang, F.L. Meng, H.X. Zhong, M.M. Shi, Y. Zhang et al., Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle. Adv. Mater. 29(3), 1604799 (2017)

    Article  Google Scholar 

  72. L.A. Román-Ramírez, J. Marco, Design of experiments applied to lithium-ion batteries: a literature review. Appl. Energy 320, 119305 (2021). https://doi.org/10.1016/j.apenergy.2022.119305

    Article  CAS  Google Scholar 

  73. D. Bryans, M.R. Jiminez, J.M. Maxwell, J.M. Mitxelena, D. Kerr, L.E. Berlouis, Standalone batteries for power backup and energy storage. Adv. Energy Stor.: Latest Dev. R&D Mark. (2022). https://doi.org/10.1002/9781119239390.ch3

    Article  Google Scholar 

  74. Gustavsson, J. Energy storage technology comparison: A knowledge guide to simplify selection of energy storage technology. (2016).

  75. Y. Zhang, C.G. Zhou, J. Yang, S.C. Xue, H.L. Gao, X.H. Yan, L.X. Wang, Advances and challenges in improvement of the electrochemical performance for lead-acid batteries: a comprehensive review. J. Power Sources 520, 230800 (2022). https://doi.org/10.1016/j.jpowsour.2021.230800

    Article  CAS  Google Scholar 

  76. X. Tang, S. Lv, K. Jiang, G. Zhou, X. Liu, Recent development of ionic liquid-based electrolytes in lithium-ion batteries. J. Power Sources 542, 231792 (2022). https://doi.org/10.1016/j.jpowsour.2022.231792

    Article  CAS  Google Scholar 

  77. S. Muslimin, Z. Nawawi, B. Y. Suprapto, & T. Dewi, Comparison of Batteries Used in Electrical Vehicles. In 5th FIRST T1 T2 2021 International Conference (FIRST-T1-T2 2021), 421–425 (2022). Atlantis Press. https://doi.org/10.2991/ahe.k.220205.074.

  78. D. Kumar, S.K. Rajouria, S.B. Kuhar, D.K. Kanchan, Progress and prospects of sodium–sulfur batteries: a review. Solid State Ionics 312, 8–16 (2017). https://doi.org/10.1016/j.ssi.2017.10.004

    Article  CAS  Google Scholar 

  79. P. Alotto, M. Guarnieri, F. Moro, Redox flow batteries for the storage of renewable energy: a review. Renew. Sustain. Energy Rev. 29, 325–335 (2014). https://doi.org/10.1016/j.rser.2013.08.001

    Article  CAS  Google Scholar 

  80. Z. Yuan, X. Li, Perspective of alkaline zinc-based flow batteries. Sci. China Chem. (2022). https://doi.org/10.1007/s11426-022-1456-5

    Article  Google Scholar 

  81. M. Shahjalal, P.K. Roy, T. Shams, A. Fly, J.I. Chowdhury, M.R. Ahmed, K. Liu, A review on second-life of Li-ion batteries: prospects, challenges, and issues. Energy 241, 122881 (2022)

    Article  CAS  Google Scholar 

  82. Z. Abdin, K. R. Khalilpour, Single and polystorage technologies for renewable-based hybrid energy systems. In Polygeneration with polystorage for chemical and energy hubs (2019). (pp. 77–131). Academic Press.

  83. M. Shahjalal, P.K. Roy, T. Shams, A. Fly, J.I. Chowdhury, M.R. Ahmed, K. Liu, A review on second-life of Li-ion batteries: prospects, challenges, and issues. Energy 241, 122881 (2022). https://doi.org/10.1016/j.energy.2021.122881

    Article  CAS  Google Scholar 

  84. N. Ghaeminezhad, M. Monfared, Charging control strategies for lithium-ion battery packs: review and recent developments. IET Power Electron. 15(5), 349–367 (2022). https://doi.org/10.1049/pel2.12219

    Article  Google Scholar 

  85. M. Banerjee, H. Kaur, A comparison among lithium-ion, nickel–cadmium & nickel-metal-hydride batteries for charging and discharging in electric vehicle by bidirectional Dc-Dc converter. In 2022 IEEE IAS Global Conference on Emerging Technologies (GlobConET), 361–368 (2022). IEEE. https://doi.org/10.1109/GlobConET53749.2022.9872335

  86. P. Chen, C. Wang, T. Wang, Review and prospects for room-temperature sodium-sulfur batteries. Mater. Res. Lett. 10(11), 691–719 (2022). https://doi.org/10.1080/21663831.2022.2092428

    Article  CAS  Google Scholar 

  87. Q. Jiang, Y. Ren, Y. Yang, L. Wang, L. Dai, Z. He, Recent advances in carbon-based electrocatalysts for vanadium redox flow battery: mechanisms, properties, and perspectives. Compos. Part B: Eng. (2022). https://doi.org/10.1016/j.compositesb.2022.110094

    Article  Google Scholar 

  88. F. Häggström, J. Delsing, Iot energy storage-a forecast. Energy harvest. Syst. 5(3–4), 43–51 (2018). https://doi.org/10.1515/ehs-2018-0010

    Article  Google Scholar 

  89. T. Bocklisch, Hybrid energy storage systems for renewable energy applications. Energy Procedia 73, 103–111 (2015). https://doi.org/10.1016/j.egypro.2015.07.582

    Article  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirbid Sircar.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaghela, P., Pandey, V., Sircar, A. et al. Energy storage techniques, applications, and recent trends: A sustainable solution for power storage. MRS Energy & Sustainability 10, 261–276 (2023). https://doi.org/10.1557/s43581-023-00069-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43581-023-00069-9

Keywords

Navigation