Skip to main content
Log in

Transmission electron microscopy with atomic resolution under atmospheric pressures

  • Prospective Article
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Significant developments in micro-electrical-mechanical systems-based devices for use in transmission electron microscopy (TEM) sample holders have recently led to the commercialization of windowed gas cells that now enable the atomic-resolution visualization of phenomena occurring during gas–solid interactions at atmospheric pressure. In situ TEM study under atmospheric ressures provides unique information that is beneficial to correlating the structure–properties relationship of nanomaterials, particularly under real gaseous environments. We here provide a brief introduction of the advanced instrumentation of windowed gas cells and review recent progress of in situ atomic-resolution TEM study under atmospheric pressures, including some application examples of oxidation and reduction processes, dynamic growth of nanomaterials, catalytic reactions, and “operando” TEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Table I
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. M. Knoll and E. Ruska: Das elektronenmikroskop. Z. Phys. 78, 318 (1932).

    CAS  Google Scholar 

  2. O. Scherzer: The theoretical resolution limit of the electron microscope. J. Appl. Phys. 20, 20 (1949).

    CAS  Google Scholar 

  3. A.V. Crewe, J. Wall, and J. Langmore: Visibility of single atoms. Science 12, 1338 (1970).

    Google Scholar 

  4. S.J. Pennycook and L.A. Boatner: Chemically sensitive structure-imaging with a scanning transmission electron microscope. Nature 336, 565 (1988).

    CAS  Google Scholar 

  5. D.A. Muller, T. Sorsch, S. Moccio, F.H. Baumann, K. Evans-Lutterodt, and G. Timp: The electronic structure at the atomic scale of ultrathin gate oxides. Nature 399, 758 (1999).

    CAS  Google Scholar 

  6. D.B. Williams and C.B. Carter: The transmission electron microscope (Springer, Berlin, 1996).

    Google Scholar 

  7. M. Haider, S. Uhlemann, E. Schwan, B. Kabius, and K. Urban: Electron microscopy image enhanced. Nature 392, 768 (1998).

    CAS  Google Scholar 

  8. P.E. Batson, N. Dellby, and O.L. Krivanek: Sub-Ã¥ngstrom resolution using aberration corrected electron optics. Nature 418, 617 (2002).

    CAS  Google Scholar 

  9. P.D. Nellist, M.F. Chisholm, N. Dellby, O.L. Krivanek, M.F. Murfitt, Z.S. Szilagyi, A.R. Lupini, A. Borisevich, W.H. Sides Jr., and S.J. Pennycook: Direct sub-angstrom imaging of a crystal lattice. Science 17, 1741 (2004).

    Google Scholar 

  10. K.W. Urban: Studying atomic structures by aberration-corrected transmission electron microscopy. Science 25, 506 (2008).

    Google Scholar 

  11. M.A. Haque and M.T.A. Saif: Application of MEMS force sensors for in situ mechanical characterization of nano-scale thin films in SEM and TEM. Sens. Actuators A 239, 97 (2002).

    Google Scholar 

  12. S. Lu, D.A. Dikin, S. Zhang, F.T. Fisher, J. Lee, and Rodney S. Ruoff: Realization of nanoscale resolution with a micromachined thermally actuated testing stage. Rev. Sci. Instrum. 75, 2154 (2004).

    CAS  Google Scholar 

  13. Y. Zhu, N. Moldovan, and H.D. Espinosa: A microelectromechanical load sensor for in situ electron and x-ray microscopy tensile testing of nanostructures. Appl. Phys. Lett. 86, 013506 (2005).

    Google Scholar 

  14. M.A. Haque, H.D. Espinosa, and H.J. Lee: MEMS for in situ testing Handling, actuation, loading, and displacement measurements. MRS Bull. 35, 375 (2010).

    Google Scholar 

  15. L.F. Allard, W.C. Bigelow, M. Jose-Yacaman, D.P. Nackashi, J. Damiano, and S.E. Mick: A new MEMS-based system for ultra-high-resolution imaging at elevated temperatures. Microsc. Res. Tech. 72, 208 (2009).

    CAS  Google Scholar 

  16. J.F. Creemer, S. Helveg, P.J. Kooyman, A.M. Molenbroek, H.W. Zandbergen, and P.M. Sarro: A MEMS reactor for atomic-scale microscopy of nanomaterials under industrially relevant conditions. J. Micro Syst. 19, 254 (2010).

    CAS  Google Scholar 

  17. L.F. Allard, S.H. Overbury, W.C. Bigelow, M.B. Katz, D.P. Nackashi, and J. Damiano: Novel MEMS-based gas-cell/heating specimen holder provides advanced imaging capabilities for in situ reaction studies. Microsc. Microanal. 18, 656 (2012).

    CAS  Google Scholar 

  18. F. Wu and N. Yao: Advances in windowed gas cells for in-situ TEM studies. Nano Energy 13, 735 (2015).

    CAS  Google Scholar 

  19. R. Boston, Z. Schnepp, Y. Nemoto, Y. Sakka, and S.R. Hall: In situ TEM observation of a microcrucible mechanism of nanowire growth. Science 344, 623 (2014).

    CAS  Google Scholar 

  20. P. Poncharal, Z.L. Wang, D. Ugarte, and W.A. De Heer: Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283, 1513 (1999).

    CAS  Google Scholar 

  21. J.Y. Huang, L. Zhong, C.M. Wang, J.P. Sullivan, W. Xu, L.Q. Zhang, S.X. Mao, N.S. Hudak, X.H. Liu, A. Subramanian, H. Fan, L. Qi, A. Kushima, and J. Li: In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330, 1515 (2010).

    CAS  Google Scholar 

  22. C.T. Nelson, P. Gao, J.R. Jokisaari, C. Heikes, C. Adamo, A. Melville, S.H. Baek, C.M. Folkman, B. Winchester, Y. Gu, Y. Liu, K. Zhang, E. Wang, J. Li, L.Q. Chen, C.B. Eom, D.G. Schlom, and X. Pan: Domain dynamics during ferroelectric switching. Science 334, 968 (2011).

    CAS  Google Scholar 

  23. P.L. Hansen, J.B. Wagner, S. Helveg, J.R. Rostrup-Nielsen, B.S. Clausen, and H. Topsøe: Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 295, 2053 (2002).

    CAS  Google Scholar 

  24. H. Yoshida, Y. Kuwauchi, J.R. Jinschek, K. Sun, S. Tanaka, M. Kohyama, S. Shimada, M. Haruta, and S. Takeda: Visualizing gas molecules interacting with supported nanoparticulate catalysts at reaction conditions. Science 335, 317 (2012).

    CAS  Google Scholar 

  25. L. Zhang, B.K. Miller, and P.A. Crozier: Atomic level in situ observation of surface amorphization in anatase nanocrystals during light irradiation in water vapor. Nano Lett. 13, 679 (2013).

    Google Scholar 

  26. H. Zheng, R.K. Smith, Y. Jun, C. Kisielowski, U. Dahmen, and A.P. Alivisatos: Observation of single colloidal platinum nanocrystal growth trajectories. Science 324, 1309 (2009).

    CAS  Google Scholar 

  27. Z. Zeng, X. Zhang, K. Bustillo, K. Niu, C. Gammer, J. Xu, and H. Zheng: In situ study of lithiation and delithiation of MoS2 nanosheets using electrochemical liquid cell transmission electron microscopy. Nano Lett. 15, 5214 (2015).

    CAS  Google Scholar 

  28. F. Wu and N. Yao: Advances in sealed liquid cells for in-situ TEM electrochemical investigation of lithium-ion battery. Nano Energy 11, 196 (2015).

    CAS  Google Scholar 

  29. Y. Wang, X. Chen, H. Cao, C. Deng, X. Cao, and P. Wang: A structural study of Escherichia coli cells using an in situ liquid chamber TEM technology. J. Anal. Methods Chem. 2015, 829302 (2015).

    Google Scholar 

  30. S. Mehraeen, J.T. McKeown, P.V. Deshmukh, J.E. Evans, P. Abellan, P. Xu, B.W. Reed, M.L. Taheri, P.E. Fischione, and N.D. Browning: A (S)TEM gas cell holder with localized laser heating for in situ experiments. Microsc. Microanal. 19, 470 (2013).

    CAS  Google Scholar 

  31. L. Marton: La microscopie electronique des objets biologiques. Bull. Acad. R. Med. Belg. 21, 553 (1935).

    Google Scholar 

  32. E. Ruska: Beitrag zur übermikroskopischen Abbildung bei höheren Drucken. Kolloid-Zeitschrift. 100, 212 (1942).

    CAS  Google Scholar 

  33. A. Casu, E. Sogne, A. Genovese, C. Di Benedetto, S.L. Mozo, E. Zuddas, F. Pagliari, and A. Falqui: The new youth of the in situ transmission electron microscopy. (InTech, Rijeka, Croatia. DOI: 10.5772/63269, 2016).

    Google Scholar 

  34. T.W. Hansen and J.B. Wagner: Environmental transmission electron microscopy in an aberration-corrected environment. Microsc. Microanal. 18, 684 (2012).

    CAS  Google Scholar 

  35. R. Sharma: Design and applications of environmental cell transmission electron microscope for in situ observations of gas-solid reactions. Microsc. Microanal. 7, 494 (2001).

    CAS  Google Scholar 

  36. J.R. Jinschek and S. Helveg: Image resolution and sensitivity in an environmental transmission electron microscope. Micron 43, 1156 (2012).

    CAS  Google Scholar 

  37. J.R. Jinschek: Advances in the environmental transmission electron microscope (ETEM) for nanoscale in situ studies of gas-solid interactions. Chem. Commun. 50, 2696 (2014).

    CAS  Google Scholar 

  38. H.L. Xin, K. Niu, D.H. Alsem, and H. Zheng: In situ TEM study of catalytic nanoparticle reactions in atmospheric pressure gas environment. Microsc. Microanal. 19, 1558 (2013).

    CAS  Google Scholar 

  39. X.F. Zhang and T. Kamino: Imaging gas-solid interactions in an atomic resolution environmental TEM. Micros Today 14, 16 (2006).

    CAS  Google Scholar 

  40. H.G. Heide: Electron microscopic observation of specimens under controlled gas pressure. J. Cell Biol. 13, 147 (1962).

    CAS  Google Scholar 

  41. O. Tabata and T. Tsuchiya: Reliability of MEMS (Wiley-VCH, Weinheim, 2007).

    Google Scholar 

  42. T. Doll, M. Hochberg, D. Barsic, and A. Scherer: Micro-machined electron transparent alumina vacuum windows. Sens. Actuators A 87, 52 (2000).

    CAS  Google Scholar 

  43. T. Yaguchi, M. Suzuki, A. Watabe, Y. Nagakubo, K. Ueda, and T. Kamino: Development of a high temperature-atmospheric pressure environmental cell for high-resolution TEM. J. Electron Microsc. 60, 217 (2011).

    CAS  Google Scholar 

  44. N. de Jonge, W.C. Bigelow, and G.M. Veith: Atmospheric pressure scanning transmission electron microscopy. Nano Lett. 10, 1028 (2010).

    Google Scholar 

  45. T.W. Hansen and J.B. Wagner: Catalysts under controlled atmospheres in the transmission electron microscope. ACS Catal. 4, 1673 (2014).

    CAS  Google Scholar 

  46. T. Kawasaki, K. Ueda, M. Ichihashi, and T. Tanji: Improvement of windowed type environmental-cell transmission electron microscope for in situ observation of gas-solid interactions. Rev. Sci. Instrum. 80, 113701 (2009).

    Google Scholar 

  47. T. Alan, T. Yokosawa, J. Gaspar, G. Pandraud, O. Paul, F. Creemer, P.M. Sarro, and H.W. Zandbergen: Micro-fabricated channel with ultra-thin yet ultra-strong windows enables electron microscopy under 4-bar pressure. Appl. Phys. Lett. 100, 4 (2012).

    Google Scholar 

  48. H. Ghassemi, W. Harlow, O. Mashtalir, M. Beidaghi, M.R. Lukatskaya, Y. Gogotsi, and M.L. Taheri: In situ environmental transmission electron microscopy study of oxidation of two-dimensional Ti3C2 and formation of carbon-supported TiO2. J. Mater. Chem. A 2, 14339 (2014).

    CAS  Google Scholar 

  49. X. Shen, S. Dai, C. Zhang, S. Zhang, S.M. Sharkey, G.W. Graham, X. Pan, and Z. Peng: In situ atomic-scale observation of the two-dimensional Co(OH)2 transition at atmospheric pressure. Chem. Mater. 29, 4572 (2017).

    CAS  Google Scholar 

  50. Y.A. Wu, L. Li, Z. Li, A. Kinaci, M.K.Y. Chan, Y. Sun, J.R. Guest, I. McNulty, T. Rajh, and Y. Liu: Visualizing redox dynamics of a single Ag/AgCl heterogeneous nanocatalyst at atomic resolution. ACS Nano 10, 3738 (2016).

    CAS  Google Scholar 

  51. S. Dai, Y. Hou, M. Onoue, S. Zhang, W. Gao, X. Yan, G.W. Graham, R. Wu, and X. Pan: Revealing surface elemental composition and dynamic processes involved in facet-dependent oxidation of Pt3Co nanoparticles via in situ transmission electron microscopy. Nano Lett. 17, 4683 (2017).

    CAS  Google Scholar 

  52. C. Granqvist, L. Kish, and W. Marlow: Gas phase nanoparticle synthesis (Springer, Berlin, Germany, 2004).

    Google Scholar 

  53. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan: One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. 15, 353 (2003).

    CAS  Google Scholar 

  54. C.N.R. Rao, A. Müller, and A.K. Cheetham: The chemistry of nanomaterials: synthesis, properties and applications (Wiley-VCH, Weinheim, Germany, 2004).

    Google Scholar 

  55. S. Dai, Y. You, S. Zhang, W. Cai, M. Xu, L. Xie, R. Wu, G.W. Graham, and X. Pan: In-situ atomic-scale observation of oxygen-driven core-shell formation in Pt3Co nanoparticles. Nat. Commun. 8, 204 (2017).

    Google Scholar 

  56. J.A. Aguiar, S. Wozny, T.G. Holesinger, T. Aoki, M.K. Patel, M. Yang, J.J. Berry, M. Al-Jassim, W. Zhou, and K. Zhu: In situ investigation of the formation and metastability of formamidinium lead tri-iodide perovskite solar cells. Energy Environ. Sci. 9, 2372 (2016).

    CAS  Google Scholar 

  57. T. Avanesian, S. Dai, M.J. Kale, G.W. Graham, X. Pan, and P. Christopher: Quantitative and atomic-scale view of CO-induced Pt nanoparticle surface reconstruction at saturation coverage via DFT calculations coupled with in situ TEM and IR. J. Am. Chem. Soc. 139, 4551 (2017).

    CAS  Google Scholar 

  58. A. Bourane, and D. Bianchi: Heats of adsorption of the linear CO species on Pt/Al2O3 using infrared spectroscopy: impact of the Pt dispersion. J. Catal. 218, 447 (2003).

    CAS  Google Scholar 

  59. Y. Jiang, H. Li, Z. Wu, W. Ye, H. Zhang, Y. Wang, C. Sun, and Z. Zhang: In Situ observation of hydrogen-induced surface faceting for palladium-copper nanocrystals at atmospheric pressure. Angew. Chem. 128, 12615 (2016).

    Google Scholar 

  60. T.M. Onn, S. Zhang, L. Arroyo-Ramirez, Y. Chung, G.W. Graham, X. Pan, and R.J. Gorte: Improved thermal stability and methane-oxidation activity of Pd/Al2O3 catalysts by atomic layer deposition of ZrO2. ACS Catal. 5, 5696 (2015).

    CAS  Google Scholar 

  61. S. Zhang, M. Cargnello, W. Cai, C.B. Murray, G.W. Graham, and X. Pan: Revealing particle growth mechanisms by combining high-surface-area catalysts made with monodisperse particles and electron microscopy conducted at atmospheric pressure. J. Catal. 337, 240 (2016).

    CAS  Google Scholar 

  62. S. Dai, S. Zhang, M.B. Katz, G.W. Graham, and X. Pan: In situ observation of Rh-CaTiO3 catalysts during reduction and oxidation treatments by transmission electron microscopy. ACS Catal. 7, 1579 (2017).

    CAS  Google Scholar 

  63. J.C. Matsubu, S. Zhang, L. De Rita, N.S. Marinkovic, J.G. Chen, G.W. Graham, X. Pan, and P. Christopher: Adsorbate-mediated strong metal-support interactions in oxide-supported Rh catalysts. Nat. Chem. 9, 120 (2017).

    CAS  Google Scholar 

  64. S. Zhang, P.N. Plessow, J.J. Willis, S. Dai, M. Xu, G.W. Graham, M. Cargnello, F. Abild-Pedersen, and X. Pan: Dynamical observation and detailed description of catalysts under strong metal-support interaction. Nano Lett. 16, 4528 (2016).

    CAS  Google Scholar 

  65. S. Tauster, S. Fung, and R.J. Garten: Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide. J. Am. Chem. Soc. 100, 170 (1978).

    CAS  Google Scholar 

  66. S. Zhang, C. Chen, M. Cargnello, P. Fornasiero, R.J. Gorte, G.W. Graham, and X. Pan: Dynamic structural evolution of supported palladium-ceria core-shell catalysts revealed by in situ electron microscopy. Nat. Commun. 6, 7778 (2015).

    Google Scholar 

  67. M.A. Bañares and I.E. Wachs: Molecular structures of supported metal oxide catalysts under different environments. J. Raman Spectrosc. 33, 359 (2002).

    Google Scholar 

  68. M.A. Bañares: Operando methodology: combination of in situ spectroscopy and simultaneous activity measurements under catalytic reaction conditions. Catal. Today 100, 71 (2005).

    Google Scholar 

  69. S. Giorgio, M. Cabie, and C.R. Henry: Dynamic observations of Au catalysts by environmental electron microscopy. Gold Bull. 41, 167 (2008).

    CAS  Google Scholar 

  70. S.B. Vendelbo, C.F. Elkjær, H. Falsig, I. Puspitasari, P. Dona, L. Mele, B. Morana, B.J. Nelissen, R. van Rijn, J.F. Creemer, P.J. Kooyman, and S. Helveg: Visualization of oscillatory behaviour of Pt nanoparticles catalysing CO oxidation. Nat. Mater. 13, 884 (2014).

    CAS  Google Scholar 

  71. Y. Li, D. Zakharov, S. Zhao, R. Tappero, U. Jung, A. Elsen, Ph Baumann, R.G. Nuzzo, E.A. Stach, and A.I. Frenkel: Complex structural dynamics of nanocatalysts revealed in Operando conditions by correlated imaging and spectroscopy probes. Nat. Commun. 6, 7583 (2015).

    CAS  Google Scholar 

  72. P.A. Crozier and T.W. Hansen: In situ and operando transmission electron microscopy of catalytic materials. MRS Bull. 40, 38 (2015).

    Google Scholar 

  73. M.L. Taheri, E.A. Stach, I. Arslan, P.A. Crozier, B.C. Kabius, T. LaGrange, A.M. Minor, S. Takeda, M. Tanase, J.B. Wagner, and R. Sharma: Current status and future directions for in situ transmission electron microscopy. Ultramicroscopy 170, 86 (2016).

    CAS  Google Scholar 

  74. J. Wu, H. Shan, W. Chen, X. Gu, P. Tao, C. Song, W. Shang, and T. Deng: In situ environmental TEM in imaging gas and liquid phase chemical reactions for materials research. Adv. Mater. 28, 9686 (2016).

    CAS  Google Scholar 

  75. A.R. Faruqi and G. McMullan: Electronic detectors for electron microscopy. Q. Rev. Biophys. 44, 357 (2011).

    CAS  Google Scholar 

  76. H.G. Liao, D. Zherebetskyy, H. Xin, C. Czarnik, P. Ercius, H. Elmlund, M. Pan, L.W. Wang, and H. Zheng: Facet development during platinum nanocube growth. Science 345, 916 (2014).

    CAS  Google Scholar 

  77. S.A. Hilbert, C. Uiterwaal, B. Barwick, H. Batelaan, and A.H. Zewail: Temporal lenses for attosecond and femtosecond electron pulses. Proc. Natl. Acad. Sci. USA 106, 10558 (2009).

    CAS  Google Scholar 

  78. D.J. Flannigan, B. Barwick, and A.H. Zewail: Biological imaging with 4D ultrafast electron microscopy. Proc. Natl. Acad. Sci. USA 107, 9933 (2010).

    CAS  Google Scholar 

  79. D.J. Flannigan and A.H. Zewail: 4D electron microscopy: principles and applications. Acc. Chem. Res. 45, 1828 (2012).

    CAS  Google Scholar 

  80. D.A. Plemmons, P.K. Suri, and D.J. Flannigan: Probing structural and electronic dynamics with ultrafast electron microscopy. Chem. Mater. 27, 3178 (2015).

    CAS  Google Scholar 

  81. O. Mansour, A. Kadoun, L. Khouchaf, and C. Mathieu: Monte Carlo simulation of the electron beam scattering under water vapor environment at low energy. Vacuum 87, 11 (2013).

    CAS  Google Scholar 

  82. T.W. Hansen and J.B. Wagner: Controlled atmosphere transmission electron microscopy (Springer, Heidelberg, 2016).

    Google Scholar 

  83. J. Wu, S. Helveg, S. Ullmann, Z. Peng, and A.T. Bell: Growth of encapsulating carbon on supported Pt nanoparticles studied by in situ TEM. J. Catal. 338, 295 (2016).

    CAS  Google Scholar 

  84. G. McMullan, A.R. Faruqi, D. Clare, and R. Henderson: Comparison of optimal performance at 300 keV of three direct electron detectors for use in low dose electron microscopy. Ultramicroscopy 147, 156 (2014).

    CAS  Google Scholar 

  85. A. Stevens, H. Yang, L. Carin, I. Arslan, and N.D. Browning: The potential for Bayesian compressive sensing to significantly reduce electron dose in high-resolution STEM images. Microscopy 63, 41 (2014).

    Google Scholar 

  86. A. Stevens, L. Kovarik, P. Abellan, X. Yuan, L. Carin, and N.D. Browning: Applying compressive sensing to TEM video: a substantial frame rate increase on any camera. Adv. Struct. Chem. Imaging 1, 10 (2015).

    Google Scholar 

  87. N.D. Browning, A. Stevens, L. Kovarik, A. Liyu, B.L. Mehdi, B. Stanfill, S. Reehl, and L. Bramer: Implementing sub-sampling methods for low-dose (scanning) transmission electron microscopy (S/TEM). Microsc. Microanal. 23, 82 (2017).

    Google Scholar 

  88. D.G. Xie, Z.J. Wang, J. Sun, J. Li, E. Ma, and Z.W. Shan: In situ study of the initiation of hydrogen bubbles at the aluminium metal/oxide interface. Nat. Mater. 14, 899 (2015).

    CAS  Google Scholar 

  89. L. Luo, B. Liu, S. Song, W. Xu, J.G. Zhang, and C. Wang: Revealing the reaction mechanisms of Li-O2 batteries using environmental transmission electron microscopy. Nat. Nanotechnol. 12, 535 (2017).

    CAS  Google Scholar 

  90. S. Dai, J. Zhao, M. He, X. Wang, J. Wan, Z. Shan, and J. Zhu: Elastic properties of GaN nanowires: revealing the influence of planar defects on Young’s modulus at nanoscale. Nano Lett. 15, 8 (2015).

    CAS  Google Scholar 

  91. J.W. Ma, W.J. Lee, J.M. Bae, K.S. Jeong, S.H. Oh, J.H. Kim, S.H. Kim, J.H. Seo, J.P. Ahn, H. Kim, and M.H. Cho: Carrier mobility enhancement of tensile strained Si and SiGe nanowires via surface defect engineering. Nano Lett. 15, 7204 (2015).

    CAS  Google Scholar 

  92. R.R. Unocic, R.L. Sacci, G.M. Brown, G.M. Veith, N.J. Dudney, K.L. More, F.S. Walden, D.S. Gardiner, J. Damiano, and D.P. Nackashi: Quantitative electrochemical measurements using in situ ec-S/TEM devices. Microsc. Microanal. 20, 452 (2014).

    CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the outstanding scientific work and contributions of the researchers and institutions in the field of in situ environmental TEM studies involving the gas-solid interactions. The authors also acknowledge the support from the National Science Foundation (Grant Nos. DMR-1506535 and CBET-1159240) and the University of California-Irvine Materials Research Institute (IMRI) for use of the state-of-the-art TEM facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqing Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, S., Gao, W., Zhang, S. et al. Transmission electron microscopy with atomic resolution under atmospheric pressures. MRS Communications 7, 798–812 (2017). https://doi.org/10.1557/mrc.2017.125

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2017.125

Navigation