Skip to main content

Advertisement

Log in

Rechargeable Mg–Li hybrid batteries: status and challenges

  • Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A magnesium–lithium (Mg–Li) hybrid battery consists of an Mg metal anode, a Li+ intercalation cathode, and a dual-salt electrolyte with both Mg2+ and Li+ ions. The demonstration of this technology has appeared in literature for few years and great advances have been achieved in terms of electrolytes, various Li cathodes, and cell architectures. Despite excellent battery performances including long cycle life, fast charge/discharge rate, and high Coulombic efficiency, the overall research of Mg–Li hybrid battery technology is still in its early stage, and also raised some debates on its practical applications. In this regard, we focus on a comprehensive overview of Mg–Li hybrid battery technologies developed in recent years. Detailed discussion of Mg–Li hybrid operating mechanism based on experimental results from literature helps to identify the current status and technical challenges for further improving the performance of Mg–Li hybrid batteries. Finally, a perspective for Mg–Li hybrid battery technologies is presented to address strategic approaches for existing technical barriers that need to be overcome in future research direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  1. M. Armand and J.M. Tarascon: Building better batteries. Nature 451 (7179), 652 (2008).

    Article  CAS  Google Scholar 

  2. B. Dunn, H. Kamath, and J.M. Tarascon: Electrical energy storage for the grid: A battery of choices. Science 334 (6058), 928 (2011).

    Article  CAS  Google Scholar 

  3. M.S. Whittingham: Materials challenges facing electrical energy storage. MRS Bull. 33 (4), 411 (2008).

    Article  CAS  Google Scholar 

  4. Z.G. Yang, J.L. Zhang, M.C.W. Kintner-Meyer, X.C. Lu, D.W. Choi, J.P. Lemmon, and J. Liu: Electrochemical energy storage for green grid. Chem. Rev. 111 (5), 3577 (2011).

    Article  CAS  Google Scholar 

  5. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J.M. Tarascon: Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407 (6803), 496 (2000).

    Article  CAS  Google Scholar 

  6. V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach: Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 4 (9), 3243 (2011).

    Article  CAS  Google Scholar 

  7. J.B. Goodenough: Rechargeable batteries: Challenges old and new. J. Solid State Electrochem. 16 (6), 2019 (2012).

    Article  CAS  Google Scholar 

  8. J. Liu: Addressing the grand challenges in energy storage. Adv. Funct. Mater. 23 (8), 924 (2013).

    Article  CAS  Google Scholar 

  9. Y. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W. Cai, P.J. Ferreira, A. Pirkle, R.M. Wallace, K.A. Cychosz, M. Thommes, D. Su, E.A. Stach, and R.S. Ruoff: Carbon-based supercapacitors produced by activation of graphene. Science 332 (6037), 1537 (2011).

    Article  CAS  Google Scholar 

  10. V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P-L. Taberna, S.H. Tolbert, H.D. Abruña, P. Simon, and B. Dunn: High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12 (6), 518 (2013).

    Article  CAS  Google Scholar 

  11. M. Ghidiu, M.R. Lukatskaya, M-Q. Zhao, Y. Gogotsi, and M.W. Barsoum: Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516 (7529), 78 (2014).

    Article  CAS  Google Scholar 

  12. T. Janoschka, N. Martin, U. Martin, C. Friebe, S. Morgenstern, H. Hiller, M.D. Hager, and U.S. Schubert: An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials. Nature 527 (7576), 78 (2015).

    Article  CAS  Google Scholar 

  13. B. Li, Z. Nie, M. Vijayakumar, G. Li, J. Liu, V. Sprenkle, and W. Wang: Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery. Nat. Commun. 6, 6303 (2015).

    Article  CAS  Google Scholar 

  14. G.S. Li, X.C. Lu, J.Y. Kim, K.D. Meinhardt, H.J. Chang, N.L. Canfield, and V.L. Sprenkle: Advanced intermediate temperature sodium-nickel chloride batteries with ultra-high energy density. Nat. Commun. 7, 10683 (2016).

    Article  CAS  Google Scholar 

  15. G.S. Li, X.C. Lu, J.Y. Kim, V.V. Viswanathan, K.D. Meinhardt, M.H. Engelhard, and V.L. Sprenkle: An advanced Na-FeCl2 ZEBRA battery for stationary energy storage application. Adv. Energy Mater. 5 (12), 1500357 (2015).

    Article  CAS  Google Scholar 

  16. N. Yabuuchi, K. Kubota, M. Dahbi, and S. Komaba: Research development on sodium-ion batteries. Chem. Rev. 114 (23), 11636 (2014).

    Article  CAS  Google Scholar 

  17. Y. Yang, G. Zheng, and Y. Cui: Nanostructured sulfur cathodes. Chem. Soc. Rev. 42 (7), 3018 (2013).

    Article  CAS  Google Scholar 

  18. T. Liu, M. Leskes, W. Yu, A.J. Moore, L. Zhou, P.M. Bayley, G. Kim, and C.P. Grey: Cycling Li-O2 batteries via LiOH formation and decomposition. Science 350 (6260), 530 (2015).

    Article  CAS  Google Scholar 

  19. D. Lu, Y. Shao, T. Lozano, W.D. Bennett, G.L. Graff, B. Polzin, J. Zhang, M.H. Engelhard, N.T. Saenz, W.A. Henderson, P. Bhattacharya, J. Liu, and J. Xiao: Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes. Adv. Energy Mater. 5 (3), 1400993 (2015).

    Article  CAS  Google Scholar 

  20. Y. Liu, D. Lin, Z. Liang, J. Zhao, K. Yan, and Y. Cui: Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nat. Commun. 7, 10992 (2016).

    Article  CAS  Google Scholar 

  21. J. Qian, W.A. Henderson, W. Xu, P. Bhattacharya, M. Engelhard, O. Borodin, and J-G. Zhang: High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).

    Article  CAS  Google Scholar 

  22. W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, and J-G. Zhang: Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7 (2), 513 (2014).

    Article  CAS  Google Scholar 

  23. K. Yan, Z. Lu, H-W. Lee, F. Xiong, P-C. Hsu, Y. Li, J. Zhao, S. Chu, and Y. Cui: Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 1, 16010 (2016).

    Article  CAS  Google Scholar 

  24. F. Ding, W. Xu, G.L. Graff, J. Zhang, M.L. Sushko, X. Chen, Y. Shao, M.H. Engelhard, Z. Nie, J. Xiao, X. Liu, P.V. Sushko, J. Liu, and J-G. Zhang: Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135 (11), 4450 (2013).

    Article  CAS  Google Scholar 

  25. J. Muldoon, C.B. Bucur, and T. Gregory: Quest for nonaqueous multivalent secondary batteries: Magnesium and beyond. Chem. Rev. 114 (23), 11683 (2014).

    Article  CAS  Google Scholar 

  26. D. Aurbach, B. Markovsky, I. Weissman, E. Levi, and Y. Ein-Eli: On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries. Electrochim. Acta 45 (1–2), 67 (1999).

    Article  CAS  Google Scholar 

  27. D.A. Stevens and J.R. Dahn: High capacity anode materials for rechargeable sodium-ion batteries. J. Electrochem. Soc. 147 (4), 1271 (2000).

    Article  CAS  Google Scholar 

  28. M.D. Slater, D. Kim, E. Lee, and C.S. Johnson: Sodium-ion batteries. Adv. Funct. Mater. 23 (8), 947 (2013).

    Article  CAS  Google Scholar 

  29. L. Zhao, Y.S. Hu, H. Li, Z.X. Wang, and L.Q. Chen: Porous Li4Ti5O12 coated with N-doped carbon from ionic liquids for Li-ion batteries. Adv. Mater. 23 (11), 1385 (2011).

    Article  CAS  Google Scholar 

  30. Y. Liang, H.D. Yoo, Y. Li, J. Shuai, H.A. Calderon, F.C. Robles Hernandez, L.C. Grabow, and Y. Yao: Interlayer-expanded molybdenum disulfide nanocomposites for electrochemical magnesium storage. Nano Lett. 15 (3), 2194 (2015).

    Article  CAS  Google Scholar 

  31. P.C.K. Vesborg and T.F. Jaramillo: Addressing the terawatt challenge: Scalability in the supply of chemical elements for renewable energy. RSC Adv. 2 (21), 7933 (2012).

    Article  CAS  Google Scholar 

  32. Y. Cheng, L.R. Parent, Y. Shao, C. Wang, V.L. Sprenkle, G. Li, and J. Liu: Facile synthesis of Chevrel phase nanocubes and their applications for multivalent energy storage. Chem. Mater. 26 (17), 4904 (2014).

    Article  CAS  Google Scholar 

  33. Y. Cheng, Y. Shao, L.R. Parent, M.L. Sushko, G. Li, P.V. Sushko, N.D. Browning, C. Wang, and J. Liu: Interface promoted reversible Mg insertion in nanostructured Tin–Antimony alloys. Adv. Mater. 27 (42), 6598 (2015).

    Article  CAS  Google Scholar 

  34. Y. Cheng, Y. Shao, V. Raju, X. Ji, B.L. Mehdi, K.S. Han, M.H. Engelhard, G. Li, N.D. Browning, K.T. Mueller, and J. Liu: Molecular storage of Mg ions with vanadium oxide nanoclusters. Adv. Funct. Mater. 26 (20), 3446 (2016).

    Article  CAS  Google Scholar 

  35. C.B. Bucur, T. Gregory, A.G. Oliver, and J. Muldoon: Confession of a magnesium battery. J. Phys. Chem. Lett. 6 (18), 3578 (2015).

    Article  CAS  Google Scholar 

  36. H.D. Yoo, I. Shterenberg, Y. Gofer, G. Gershinsky, N. Pour, and D. Aurbach: Mg rechargeable batteries: An on-going challenge. Energy Environ. Sci. 6 (8), 2265 (2013).

    Article  CAS  Google Scholar 

  37. D. Aurbach, Z. Lu, A. Schechter, Y. Gofer, H. Gizbar, R. Turgeman, Y. Cohen, M. Moshkovich, and E. Levi: Prototype systems for rechargeable magnesium batteries. Nature 407 (6805), 724 (2000).

    Article  CAS  Google Scholar 

  38. O. Mizrahi, N. Amir, E. Pollak, O. Chusid, V. Marks, H. Gottlieb, L. Larush, E. Zinigrad, and D. Aurbach: Electrolyte solutions with a wide electrochemical window for rechargeable magnesium batteries. J. Electrochem. Soc. 155 (2), A103 (2008).

    Article  CAS  Google Scholar 

  39. T. Liu, Y. Shao, G. Li, M. Gu, J. Hu, S. Xu, Z. Nie, X. Chen, C. Wang, and J. Liu: A facile approach using MgCl2 to formulate high performance Mg2+ electrolytes for rechargeable Mg batteries. J. Mater. Chem. A 2 (10), 3430 (2014).

    Article  CAS  Google Scholar 

  40. R.E. Doe, R. Han, J. Hwang, A.J. Gmitter, I. Shterenberg, H.D. Yoo, N. Pour, and D. Aurbach: Novel, electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteries. Chem. Commun. 50 (2), 243 (2014).

    Article  CAS  Google Scholar 

  41. Y. Cheng, R.M. Stolley, K.S. Han, Y. Shao, B.W. Arey, N.M. Washton, K.T. Mueller, M.L. Helm, V.L. Sprenkle, J. Liu, and G. Li: Highly active electrolytes for rechargeable Mg batteries based on a [Mg2([small mu]-Cl)2]2+ cation complex in dimethoxyethane. Phys. Chem. Chem. Phys. 17 (20), 13307 (2015).

    Article  CAS  Google Scholar 

  42. Z. Zhao-Karger, J.E. Mueller, X.Y. Zhao, O. Fuhr, T. Jacob, and M. Fichtner: Novel transmetalation reaction for electrolyte synthesis for rechargeable magnesium batteries. RSC Adv. 4 (51), 26924 (2014).

    Article  CAS  Google Scholar 

  43. O. Tutusaus, R. Mohtadi, T.S. Arthur, F. Mizuno, E.G. Nelson, and Y.V. Sevryugina: An efficient halogen-free electrolyte for use in rechargeable magnesium batteries. Angew. Chem., Int. Ed. 54 (27), 7900 (2015).

    Article  CAS  Google Scholar 

  44. S.G. McArthur, L.X. Geng, J.C. Guo, and V. Lavallo: Cation reduction and comproportionation as novel strategies to produce high voltage, halide free, carborane based electrolytes for rechargeable Mg batteries. Inorg. Chem. Front. 2 (12), 1101 (2015).

    Article  CAS  Google Scholar 

  45. E. Levi, Y. Gofer, and D. Aurbach: On the way to rechargeable Mg batteries: The challenge of new cathode materials. Chem. Mater. 22 (3), 860 (2010).

    Article  CAS  Google Scholar 

  46. K.W. Nam, S. Kim, S. Lee, M. Salama, I. Shterenberg, Y. Gofer, J-S. Kim, E. Yang, C.S. Park, J-S. Kim, S-S. Lee, W-S. Chang, S-G. Doo, Y.N. Jo, Y. Jung, D. Aurbach, and J.W. Choi: The high performance of crystal water containing manganese birnessite cathodes for magnesium batteries. Nano Lett. 15 (6), 4071 (2015).

    Article  CAS  Google Scholar 

  47. I. Shterenberg, M. Salama, Y. Gofer, E. Levi, and D. Aurbach: The challenge of developing rechargeable magnesium batteries. MRS Bull. 39 (5), 453 (2014).

    Article  CAS  Google Scholar 

  48. Z. Lu, A. Schechter, M. Moshkovich, and D. Aurbach: On the electrochemical behavior of magnesium electrodes in polar aprotic electrolyte solutions. J. Electroanal. Chem. 466 (2), 203 (1999).

    Article  CAS  Google Scholar 

  49. T.D. Gregory, R.J. Hoffman, and R.C. Winterton: Nonaqueous electrochemistry of magnesium: Applications to energy storage. J. Electrochem. Soc. 137 (3), 775 (1990).

    Article  CAS  Google Scholar 

  50. D. Aurbach, H. Gizbar, A. Schechter, O. Chusid, H.E. Gottlieb, Y. Gofer, and I. Goldberg: Electrolyte solutions for rechargeable magnesium batteries based on organomagnesium chloroaluminate complexes. J. Electrochem. Soc. 149 (2), A115 (2002).

    Article  CAS  Google Scholar 

  51. F-f. Wang, Y-s. Guo, J. Yang, Y. Nuli, and S-i. Hirano: A novel electrolyte system without a Grignard reagent for rechargeable magnesium batteries. Chem. Commun. 48 (87), 10763 (2012).

    Article  CAS  Google Scholar 

  52. H.S. Kim, T.S. Arthur, G.D. Allred, J. Zajicek, J.G. Newman, A.E. Rodnyansky, A.G. Oliver, W.C. Boggess, and J. Muldoon: Structure and compatibility of a magnesium electrolyte with a sulphur cathode. Nat. Commun. 2, 427 (2011).

    Article  CAS  Google Scholar 

  53. S. Yagi, T. Ichitsubo, Y. Shirai, S. Yanai, T. Doi, K. Murase, and E. Matsubara: A concept of dual-salt polyvalent-metal storage battery. J. Mater. Chem. A 2 (4), 1144 (2014).

    Article  CAS  Google Scholar 

  54. Y. Cheng, Y. Shao, J-G. Zhang, V.L. Sprenkle, J. Liu, and G. Li: High performance batteries based on hybrid magnesium and lithium chemistry. Chem. Commun. 50 (68), 9644 (2014).

    Article  CAS  Google Scholar 

  55. J-H. Cho, M. Aykol, S. Kim, J-H. Ha, C. Wolverton, K.Y. Chung, K-B. Kim, and B-W. Cho: Controlling the intercalation chemistry to design high-performance dual-salt hybrid rechargeable batteries. J. Am. Chem. Soc. 136 (46), 16116 (2014).

    Article  CAS  Google Scholar 

  56. H.D. Yoo, Y. Liang, Y. Li, and Y. Yao: High areal capacity hybrid magnesium–lithium-ion battery with 99.9% coulombic efficiency for large-scale energy storage. ACS Appl. Mater. Interfaces 7 (12), 7001 (2015).

    Article  CAS  Google Scholar 

  57. H.R. Yao, Y. You, Y.X. Yin, L.J. Wan, and Y.G. Guo: Rechargeable dual-metal-ion batteries for advanced energy storage. Phys. Chem. Chem. Phys. 18 (14), 9326 (2016).

    Article  CAS  Google Scholar 

  58. H.D. Yoo, I. Shterenberg, Y. Gofer, R.E. Doe, C.C. Fischer, G. Ceder, and D. Aurbach: A magnesium-activated carbon hybrid capacitor. J. Electrochem. Soc. 161 (3), A410 (2014).

    Article  CAS  Google Scholar 

  59. Y.Y. Shao, T.B. Liu, G.S. Li, M. Gu, Z.M. Nie, M. Engelhard, J. Xiao, D.P. Lv, C.M. Wang, J.G. Zhang, and J. Liu: Coordination chemistry in magnesium battery electrolytes: How ligands affect their performance. Sci. Rep. 3, 3130 (2013).

    Article  Google Scholar 

  60. Y.W. Cheng, D.W. Choi, K.S. Han, K.T. Mueller, J.G. Zhang, V.L. Sprenkle, J. Liu, and G.S. Li: Toward the design of high voltage magnesium-lithium hybrid batteries using dual-salt electrolytes. Chem. Commun. 52 (31), 5379 (2016).

    Article  CAS  Google Scholar 

  61. Y. Cheng, T. Liu, Y. Shao, M.H. Engelhard, J. Liu, and G. Li: Electrochemically stable cathode current collectors for rechargeable magnesium batteries. J. Mater. Chem. A 2 (8), 2473 (2014).

    Article  CAS  Google Scholar 

  62. S. Yagi, A. Tanaka, Y. Ichikawa, T. Ichitsubo, and E. Matsubara: Electrochemical stability of magnesium battery current collectors in a Grignard reagent-based electrolyte. J. Electrochem. Soc. 160 (3), C83 (2013).

    Article  CAS  Google Scholar 

  63. M.D. Levi, E. Lancry, H. Gizbar, Z. Lu, E. Levi, Y. Gofer, and D. Aurbach: Kinetic and thermodynamic studies of Mg2+ and Li+ ion insertion into the Mo6S8 Chevrel phase. J. Electrochem. Soc. 151 (7), A1044 (2004).

    Article  CAS  Google Scholar 

  64. C-J. Hsu, C-Y. Chou, C-H. Yang, T-C. Lee, and J-K. Chang: MoS2/graphene cathodes for reversibly storing Mg2+ and Mg2+/Li+ in rechargeable magnesium-anode batteries. Chem. Commun. 52 (8), 1701 (2016).

    Article  CAS  Google Scholar 

  65. T. Gao, F.D. Han, Y.J. Zhu, L.M. Suo, C. Luo, K. Xu, and C.S. Wang: Hybrid Mg2+/Li+ battery with long cycle life and high rate capability. Adv. Energy Mater. 5 (5), 1401507 (2015).

    Article  CAS  Google Scholar 

  66. S. Su, Z. Huang, Y. NuLi, F. Tuerxun, J. Yang, and J. Wang: A novel rechargeable battery with a magnesium anode, a titanium dioxide cathode, and a magnesium borohydride/tetraglyme electrolyte. Chem. Commun. 51 (13), 2641 (2015).

    Article  CAS  Google Scholar 

  67. S. Su, Y. NuLi, Z. Huang, Q. Miao, J. Yang, and J. Wang: A high-performance rechargeable Mg2+/Li+ hybrid battery using one-dimensional mesoporous TiO2(B) nanoflakes as the cathode. ACS Appl. Mater. Interfaces 8 (11A), 7111 (2016).

    Article  CAS  Google Scholar 

  68. Q. Miao, Y. NuLi, N. Wang, J. Yang, J. Wang, and S-i. Hirano: Effect of Mg2+/Li+ mixed electrolytes on a rechargeable hybrid battery with Li4Ti5O12 cathode and Mg anode. RSC Adv. 6 (4), 3231 (2016).

    Article  CAS  Google Scholar 

  69. W.J. Pan, X.L. Liu, X.W. Miao, J. Yang, J.L. Wang, Y. Nuli, and S. Hirano: Molybdenum dioxide hollow microspheres for cathode material in rechargeable hybrid battery using magnesium anode. J. Solid State Electrochem. 19 (11), 3347 (2015).

    Article  CAS  Google Scholar 

  70. N. Wu, Z.Z. Yang, H.R. Yao, Y.X. Yin, L. Gu, and Y.G. Guo: Improving the electrochemical performance of the Li4Ti5O12 electrode in a rechargeable magnesium battery by lithium–magnesium co-intercalation. Angew. Chem., Int. Ed. 54 (19), 5757 (2015).

    Article  CAS  Google Scholar 

  71. Y.F. Shi, B.K. Guo, S.A. Corr, Q.H. Shi, Y.S. Hu, K.R. Heier, L.Q. Chen, R. Seshadri, and G.D. Stucky: Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity. Nano Lett. 9 (12), 4215 (2009).

    Article  CAS  Google Scholar 

  72. Y. Zhang, J. Xie, Y. Han, and C. Li: Dual-salt Mg-based batteries with conversion cathodes. Adv. Funct. Mater. 25 (47), 7300 (2015).

    Article  CAS  Google Scholar 

  73. T. Gao, M. Noked, A.J. Pearse, E. Gillette, X. Fan, Y. Zhu, C. Luo, L. Suo, M.A. Schroeder, K. Xu, S.B. Lee, G.W. Rubloff, and C. Wang: Enhancing the reversibility of Mg/S battery chemistry through Li+ mediation. J. Am. Chem. Soc. 137 (38), 12388 (2015).

    Article  CAS  Google Scholar 

  74. Z. Zhao-Karger, X.Y. Zhao, D. Wang, T. Diemant, R.J. Behm, and M. Fichtner: Performance improvement of magnesium sulfur batteries with modified non-nucleophilic electrolytes. Adv. Energy Mater. 5 (3), 1401155 (2015).

    Article  CAS  Google Scholar 

  75. Z. Chang, Y.Q. Yang, X.W. Wang, M.X. Li, Z.W. Fu, Y.P. Wu, and R. Holze: Hybrid system for rechargeable magnesium battery with high energy density. Sci. Rep. 5, 11931 (2015).

    Article  CAS  Google Scholar 

  76. Z.H. Zhang, H.M. Xu, Z.L. Cui, P. Hu, J.C. Chai, H.P. Du, J.J. He, J.J. Zhang, X.H. Zhou, P.X. Han, G.L. Cui, and L.Q. Chen: High energy density hybrid Mg2+/Li+ battery with superior ultra-low temperature performance. J. Mater. Chem. A 4 (6), 2277 (2016).

    Article  CAS  Google Scholar 

  77. T. Ichitsubo, S. Okamoto, T. Kawaguchi, Y. Kumagai, F. Oba, S. Yagi, N. Goto, T. Doi, and E. Matsubara: Toward “rocking-chair type” Mg–Li dual-salt batteries. J. Mater. Chem. A. 3 (19), 10188 (2015).

    Article  CAS  Google Scholar 

  78. X. Sun, V. Duffort, and L.F. Nazar: Prussian blue Mg–Li hybrid batteries. Adv. Sci. 4, 1600044 (2016). doi: https://doi.org/10.1002/advs.201600044.

    Article  CAS  Google Scholar 

  79. L.M. Suo, Y.S. Hu, H. Li, M. Armand, and L.Q. Chen: A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 4, 1481 (2013).

    Article  CAS  Google Scholar 

  80. M. Walter, K.V. Kraychyk, M. Ibanez, and M.V. Koyalenko: Efficient and inexpensive sodium–magnesium hybrid battery. Chem. Mater. 27 (21), 7452 (2015).

    Article  CAS  Google Scholar 

  81. H. Dong, Y.F. Li, G.S. Li, C.J. Sun, Y. Ren, Y.H. Lu, and Y. Yao: A magneisum–sodium hybrid battery with high operating voltage. Chem. Commun. 52 (31), 8263 (2016).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Y.W.C, H.J.C., and H.D equally contributed for this work. Financial support was provided by the U.S. Department of Energy (DOE), Office of Electricity Delivery and Energy Reliability, under Contract No. 57558, and the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Award KC020105-FW P12152. Y. Y. acknowledges financial support from the Office of Naval Research (No. N00014-13-1-0543). PNNL is a multiprogram national laboratory operated for DOE by Battelle under contract DE AC05-76RL01830.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Yao or Guosheng Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Y., Chang, H.J., Dong, H. et al. Rechargeable Mg–Li hybrid batteries: status and challenges. Journal of Materials Research 31, 3125–3141 (2016). https://doi.org/10.1557/jmr.2016.331

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.331

Navigation