Skip to main content
Log in

Austenite grain growth in alumina-forming austenitic steel

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Microstructures and austenite grain growth behavior of the alumina-forming austenitic (AFA) steel subjected to normalizing and annealing at various temperatures were investigated. A modified kinetic model of austenite grain growth was constructed based on consideration of the heating history. Abnormal growth of austenite grain occurs when the temperature is increased to 1473 K, and some special large particles of the precipitates located at grain boundaries form when the sample is normalized at the temperature of 1523 K. Both NbC and NiAl precipitates are identified using routine x-ray diffraction. The fitted data based on the kinetic model used and the consideration of the heating history is in agreement with the changes in the austenite grain growth in the AFA steel even when there is abnormal grain growth. The grain growth exponents are shown to be 2.85 and 2.42 for normalizing and annealing, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. M.P. Brady, Y. Yamamoto, M.L. Santella, P.J. Maziasz, B.A. Pint, C. Liu, Z. Lu, and H. Bei: The development of alumina-forming austenitic stainless steels for high-temperature structural use. JOM 60(7), 12 (2008).

    Article  CAS  Google Scholar 

  2. Y. Yamamoto, M.P. Brady, Z.P. Lu, P.J. Maziasz, C.T. Liu, B.A. Pint, K.L. More, H. Meyer, and E.A. Payzant: Creep-resistant, Al2O3-forming austenitic stainless steels. Science 316(5823), 433 (2007).

    Article  CAS  Google Scholar 

  3. M.P. Brady, Y. Yamamoto, M.L. Santella, and L.R. Walker: Composition, microstructure, and water vapor effects on internal/external oxidation of alumina-forming austenitic stainless steels. Oxid. Met. 72(5–6), 311 (2009).

    Article  CAS  Google Scholar 

  4. Y. Yamamoto, M.P. Brady, Z.P. Lu, C.T. Liu, M. Takeyama, P.J. Maziasz, and B.A. Pint: Alumina-forming austenitic stainless steels strengthened by laves phase and MC carbide precipitates. Metall. Mater. Trans. A 38(11), 2737 (2007).

    Article  Google Scholar 

  5. G. Trotter and I. Baker: The effect of aging on the microstructure and mechanical behavior of the alumina-forming austenitic stainless steel Fe–20Cr–30Ni–2Nb–5Al. Mater. Sci. Eng., A 627, 270 (2015).

    Article  CAS  Google Scholar 

  6. Y. Yamamoto, M.P. Brady, M.L. Santella, H. Bei, P.J. Maziasz, and B.A. Pint: Overview of strategies for high-temperature creep and oxidation resistance of alumina-forming austenitic stainless steels. Metall. Mater. Trans. A 42(4), 922 (2011).

    Article  CAS  Google Scholar 

  7. X.Q. Xu, X.F. Zhang, G.L. Chen, and Z.P. Lu: Improvement of high-temperature oxidation resistance and strength in alumina-forming austenitic stainless steels. Mater. Lett. 65(21), 3285 (2011).

    Article  CAS  Google Scholar 

  8. J. Moon, T.H. Lee, Y.U. Heo, Y.S. Han, J.Y. Kang, H.Y. Ha, and D.W. Suh: Precipitation sequence and its effect on age hardening of alumina-forming austenitic stainless steel. Mater. Sci. Eng., A 645, 72 (2015).

    Article  CAS  Google Scholar 

  9. Y. Yamamoto, M.L. Santella, M.P. Brady, H. Bei, and P.J. Maziasz: Effect of alloying additions on phase equilibria and creep resistance of alumina-forming austenitic stainless steels. Metall. Mater. Trans. A 40(8), 1868 (2009).

    Article  Google Scholar 

  10. Y. Yamamoto, M. Takeyama, Z.P. Lu, C.T. Liu, N.D. Evans, P.J. Maziasz, and M.P. Brady: Alloying effects on creep and oxidation resistance of austenitic stainless steel alloys employing intermetallic precipitates. Intermetallics 16(3), 453 (2008).

    Article  CAS  Google Scholar 

  11. X.Q. Xu, X.F. Zhang, X.Y. Sun, and Z.P. Lu: Roles of manganese in the high-temperature oxidation resistance of alumina-forming austenitic steels at above 800 °C. Oxid. Met. 78(5–6), 349 (2012).

    Article  CAS  Google Scholar 

  12. M.P. Brady, J. Magee, Y. Yamamoto, D. Helmick, and L. Wang: Co-optimization of wrought alumina-forming austenitic stainless steel composition ranges for high-temperature creep and oxidation/corrosion resistance. Mater. Sci. Eng., A 590, 101 (2014).

    Article  CAS  Google Scholar 

  13. D.Q. Zhou, X.Q. Xu, H.H. Mao, Y.F. Yan, T.G. Nieh, and Z.P. Lu: Plastic flow behaviour in an alumina-forming austenitic stainless steel at elevated temperatures. Mater. Sci. Eng., A 594, 246 (2014).

    Article  CAS  Google Scholar 

  14. G. Trotter, G. Rayner, I. Baker, and P.R. Munroe: Accelerated precipitation in the AFA stainless steel Fe–20Cr–30Ni–2Nb–5Al via cold working. Intermetallics 53, 120 (2014).

    Article  CAS  Google Scholar 

  15. Q. Gao, Y. Wang, M. Gong, F. Qu, and X. Lin: Non-isothermal austenitic transformation kinetics in Fe–10Cr–1Co alloy. Appl. Phys. A 122(2), 1 (2016).

    Article  Google Scholar 

  16. S. Illescas, J. Fernández, and J. Guilemany: Kinetic analysis of the austenitic grain growth in HSLA steel with a low carbon content. Mater. Lett. 62(20), 3478 (2008).

    Article  CAS  Google Scholar 

  17. A.J. Kaijalainen, P.P. Suikkanen, T.J. Limnell, L.P. Karjalainen, J.I. Kömi, and D.A. Porter: Effect of austenite grain structure on the strength and toughness of direct-quenched martensite. J. Alloys Comp. 577, S642 (2013).

    Article  CAS  Google Scholar 

  18. L. Tian, Q. Ao, and S. Li: Effect of austenitic state on microstructure and mechanical properties of martensite/bainite steel. J. Mater. Res. 29(07), 887 (2014).

    Article  CAS  Google Scholar 

  19. L. Wang, Z. Wang, and K. Lu: Grain size effects on the austenitization process in a nanostructured ferritic steel. Acta Mater. 59, 3710 (2011).

    Article  CAS  Google Scholar 

  20. K. Banerjee, M. Militzer, M. Perez, and X. Wang: Nonisothermal austenite grain growth kinetics in a microalloyed X80 linepipe steel. Metall. Mater. Trans. A 41(12), 3161 (2010).

    Article  CAS  Google Scholar 

  21. P.R. Rios: Abnormal grain growth development from uniform grain size distributions. Acta Mater. 45(4), 1785 (1997).

    Article  CAS  Google Scholar 

  22. P.R. Rios: Abnormal grain growth in pure materials. Acta Metall. Mater. 40(10), 2765 (1992).

    Article  Google Scholar 

  23. C.M. Garzón and A.J. Ramirez: Growth kinetics of secondary austenite in the welding microstructure of a UNS S32304 duplex stainless steel. Acta Mater. 54(12), 3321 (2006).

    Article  Google Scholar 

  24. H. Adrian and F.B. Pickering: Effect of titanium additions on austenite grain growth kinetics of medium carbon V–Nb steels containing 0.008–0.018%N. Mater. Sci. Tech. 7(2), 176 (1991).

    Article  CAS  Google Scholar 

  25. P.A. Manohar, D.P. Dunne, T. Chandra, and C.R. Killmore: Grain growth predictions in microalloyed steels. ISIJ Int. 36(2), 194 (1996).

    Article  CAS  Google Scholar 

  26. S.P.A. Gill and A.C.F. Cocks: A variational approach to two dimensional grain growth—II. Numerical results. Acta Mater. 44(12), 4777 (1996).

    Article  CAS  Google Scholar 

  27. J.E. Burke and D. Turnbull: Recrystallization and grain growth (Pergamon Press, London, 1952).

    Book  Google Scholar 

  28. P.A. Beck, J.C. Kremer, L. Demer, and M. Holzworth: Grain growth in high-purity aluminum and in an aluminum-magnesium alloy. Trans. Am. Inst. Min., Metall. Pet. Eng. 175, 372 (1948).

    Google Scholar 

  29. S. Uhm, J. Moon, C. Lee, J. Yoon, and B. Lee: Prediction model for the austenite grain size in the coarse grained heat affected zone of Fe–C–Mn steels: Considering the effect of initial grain size on isothermal growth behavior. ISIJ Int. 44(7), 1230 (2004).

    Article  CAS  Google Scholar 

  30. J. Moon, J. Lee, and C. Lee: Prediction for the austenite grain size in the presence of growing particles in the weld HAZ of Ti-microalloyed steel. Mater. Sci. Eng., A 459(1–2), 40 (2007).

    Article  Google Scholar 

  31. H. Pous-Romero, I. Lonardelli, D. Cogswell, and H. Bhadeshia: Austenite grain growth in a nuclear pressure vessel steel. Mater. Sci. Eng., A 567, 72 (2013).

    Article  CAS  Google Scholar 

  32. D. Li, K. Shinozaki, H. Harada, and K. Ohishi: Investigation of precipitation behavior in a weld deposit of 11Cr–2W ferritic steel. Metall. Mater. Trans. A 36(1), 107 (2005).

    Article  CAS  Google Scholar 

  33. Q.Z. Gao, M.L. Gong, Y.L. Wang, F. Qu, and J.N. Huang: Phase transformation and properties of Fe–Cr–Co alloys with low cobalt content. Mater. Trans. 56(9), 1491 (2015).

    Article  CAS  Google Scholar 

  34. R. Staśko, H. Adrian, and A. Adrian: Effect of nitrogen and vanadium on austenite grain growth kinetics of a low alloy steel. Mater. Charact. 56(4–5), 340 (2006).

    Article  Google Scholar 

  35. M. Hillert: On the theory of normal and abnormal grain growth. Acta Metall. 13(3), 227 (1965).

    Article  CAS  Google Scholar 

  36. T. Zhou, R.J. O’malley, and H.S. Zurob: Study of grain-growth kinetics in delta-ferrite and austenite with application to thin-slab cast direct-rolling microalloyed steels. Metall. Mater. Trans. A 41(8), 2112 (2010).

    Article  Google Scholar 

  37. C. Yue, L. Zhang, S. Liao, and H. Gao: Kinetic analysis of the austenite grain growth in GCr15 steel. J. Mater. Eng. Perform. 19(1), 112 (2010).

    Article  CAS  Google Scholar 

  38. M. Militzer, E.B. Hawbolt, T.R. Meadowcroft, and A. Giumelli: Austenite grain growth kinetics in Al-killed plain carbon steels. Metall. Mater. Trans. A 27(11), 3399 (1996).

    Article  Google Scholar 

  39. H.V. Atkinson: Overview no. 65: Theories of normal grain growth in pure single phase systems. Acta Metall. 36(3), 469 (1988).

    Article  CAS  Google Scholar 

  40. F. Gil, J. Manero, and J. Planell: Effect of grain size on the martensitic transformation in NiTi alloy. J. Mater. Sci. 30(10), 2526 (1995).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The grant and financial support by the National Natural Science Foundation of China (Grant No. 51501034), the Natural Science Foundation—Steel and Iron Foundation of Hebei Province (Grant No. E2014501056), and the Fundamental Research Funds for the Central Universities (Grant No. N142303001) are gratefully acknowledged. The authors wish to gratefully acknowledge the help of Dr. Madeleine Strong Cincotta (University of Wollongong, Australia) in the final language editing of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiuzhi Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Q., Qu, F., Zhang, H. et al. Austenite grain growth in alumina-forming austenitic steel. Journal of Materials Research 31, 1732–1740 (2016). https://doi.org/10.1557/jmr.2016.178

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.178

Navigation