Skip to main content
Log in

The many facets of deformation mechanism mapping and the application to nanostructured materials

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Deformation mechanism maps are well established in the field of high temperature creep for materials having conventional coarse grain sizes but they are almost unknown within the field of nanostructured materials. This paper summarizes the background to deformation mechanism mapping, presents simplified examples that may be used to easily construct appropriate maps for any selected condition, demonstrates the potential extension of this approach to other areas such as creep fracture, and then considers the potential limitations associated with using the same approach to predict the deformation mechanisms in true nanostructured materials. Two representative deformation mechanism maps are shown for an ultrafine-grained alloy processed either by equal-channel angular pressing or by high-pressure torsion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. M.E. Kassner and M.T. Pérez-Prado: Five-power-law creep in single phase metals and alloys. Prog. Mater. Sci. 45, 1 (2000).

    Article  CAS  Google Scholar 

  2. M.E. Kassner: Fundamentals of Creep in Metals and Alloys, 2nd ed. (Elsevier, Amsterdam, The Netherlands, 2009).

    Google Scholar 

  3. J.E. Bird, A.K. Mukherjee, and J.E. Dorn: Correlations between high-temperature creep behavior and structure, in Quantitative Relation Between Properties and Microstructure, D.G. Brandon and A. Rosen, eds. (Israel Universities Press, Jerusalem, Israel, 1969), p. 255.

    Google Scholar 

  4. T.G. Langdon: Creep at low stresses: an evaluation of diffusion creep and Harper-Dorn creep as viable creep mechanisms. Metall. Mater. Trans. A 33, 249 (2002).

    Article  Google Scholar 

  5. J. Weertman and J.R. Weertman: Mechanical properties: Strongly temperature dependent, in. Physical Metallurgy, 1st ed., R.W. Cahn, ed. (North-Holland, Amsterdam, The Netherlands, 1965), p. 793.

    Google Scholar 

  6. J. Weertman: Dislocation climb theory of steady-state creep. Trans. ASM 61, 681 (1968).

    CAS  Google Scholar 

  7. F.R.N. Nabarro: Deformation of crystals by the motion of single ions, in. Report of a Conference on Strength of Solids (The Physical Society, London, UK, 1948), p. 75.

    Google Scholar 

  8. C. Herring: Diffusional viscosity of a polycrystalline solid. J. Appl. Phys. 21, 437 (1950).

    Article  Google Scholar 

  9. M.F. Ashby: First report on deformation-mechanism maps. Acta Metall. 20, 887 (1972).

    Article  CAS  Google Scholar 

  10. T.G. Langdon and F.A. Mohamed: A simple method of constructing an Ashby-type deformation mechanism map. J. Mater. Sci. 13, 1282 (1978).

    Article  CAS  Google Scholar 

  11. R.L. Coble: A model for boundary diffusion controlled creep in polycrystalline materials. J. Appl. Phys. 34, 1679 (1963).

    Article  Google Scholar 

  12. H.J. Frost and M.F. Ashby: Deformation-mechanism Maps (Pergamon, Oxford, UK, 1982).

    Google Scholar 

  13. T.G. Langdon: Recent developments in deformation mechanism maps. Met. Forum 1, 59 (1978).

    CAS  Google Scholar 

  14. F.A. Mohamed and T.G. Langdon: Deformation mechanism maps based on grain size. Metall. Trans. 5, 2339 (1974).

    Article  CAS  Google Scholar 

  15. J. Harper and J.E. Dorn: Viscous creep of aluminum near its melting temperature. Acta Metall. 5, 654 (1957).

    Article  CAS  Google Scholar 

  16. F.A. Mohamed and T.G. Langdon: Deformation mechanism maps: Their use in predicting creep behavior. J. Eng. Mater. Technol. 98, 125 (1976).

    Article  CAS  Google Scholar 

  17. F.A. Mohamed and T.G. Langdon: Deformation mechanism maps for solid solution alloys. Scr. Metall. 9, 137 (1975).

    Article  CAS  Google Scholar 

  18. F.A. Mohamed and T.G. Langdon: Deformation mechanism maps for superplastic materials. Scr. Metall. 10, 759 (1976).

    Article  CAS  Google Scholar 

  19. T.G. Langdon and F.A. Mohamed: A new type of deformation mechanism map for high-temperature creep. Mater. Sci. Eng. 32, 103 (1978).

    Article  Google Scholar 

  20. P.J. Wray: Strain-rate dependence of the tensile failure of a polycrystalline material at elevated temperatures. J. Appl. Phys. 40, 4018 (1969).

    Article  CAS  Google Scholar 

  21. M.F. Ashby and R. Raj: Creep fracture, in. The Mechanics and Physics of Fracture (The Metals Society, London, 1975), p. 148.

    Google Scholar 

  22. D.A. Miller and T.G. Langdon: Creep fracture maps for 316 stainless steel. Metall. Trans. A 10, 1635 (1979).

    Article  Google Scholar 

  23. T.G. Langdon and F.A. Mohamed: Deformation mechanism maps for ceramics. J. Mater. Sci. 11, 317 (1976).

    Article  CAS  Google Scholar 

  24. T.G. Langdon and F.A. Mohamed: The incorporation of ambipolar diffusion in deformation mechanism maps for ceramics. J. Mater. Sci. 13, 473 (1978).

    Article  CAS  Google Scholar 

  25. T.G. Langdon: Deformation mechanism maps for applications at high temperatures. Ceram. Int. 6, 11 (1980).

    Article  CAS  Google Scholar 

  26. R.S. Gordon: Mass transport in the diffusional creep of ionic solids. J. Am. Ceram. Soc. 56, 147 (1973).

    Article  CAS  Google Scholar 

  27. R.S. Gordon and J.D. Hodge: Analysis of mass transport in the diffusional creep of polycrystalline MgO-FeO-Fe2O3 solid solutions. J. Mater. Sci. 10, 200 (1975).

    Article  CAS  Google Scholar 

  28. R.Z. Valiev and T.G. Langdon: Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 51, 881 (2006).

    Article  CAS  Google Scholar 

  29. A.P. Zhilyaev and T.G. Langdon: Using high-pressure torsion for metal processing: Fundamentals and applications. Prog. Mater. Sci. 53, 893 (2008).

    Article  CAS  Google Scholar 

  30. M. Kawasaki and T.G. Langdon: Principles of superplasticity in ultrafine-grained materials. J. Mater. Sci. 42, 1782 (2007).

    Article  CAS  Google Scholar 

  31. T.G. Langdon: A unified approach to grain boundary sliding in creep and superplasticity. Acta Metall. Mater. 42, 2437 (1994).

    Article  CAS  Google Scholar 

  32. M. Kawasaki, N. Balasubramanian, and T.G. Langdon: Flow mechanisms in ultrafine-grained metals with an emphasis on superplasticity. Mater. Sci. Eng., A 528, 6624 (2011).

    Article  CAS  Google Scholar 

  33. M. Kawasaki, S. Lee, and T.G. Langdon: Constructing a deformation mechanism map for a superplastic Pb-Sn alloy processed by equal-channel angular pressing. Scr Mater. 61, 963 (2009).

    Article  CAS  Google Scholar 

  34. M. Kawasaki, A.A. Mendes, V.L. Sordi, M. Ferrante, and T.G. Langdon: Achieving superplastic properties in a Pb-Sn eutectic alloy processed by equal-channel angular pressing. J. Mater. Sci. 46, 155 (2011).

    Article  CAS  Google Scholar 

  35. M. Kawasaki, V. Sklenicka, and T.G. Langdon: Creep behavior of metals processed by equal-channel angular pressing. Kovove Mater. 49, 75 (2011).

    CAS  Google Scholar 

  36. M. Kawasaki and T.G. Langdon: The significance of grain boundary sliding in the superplastic Zn-22% Al alloy processed by ECAP. J. Mater. Sci. (2013).

    Google Scholar 

  37. M. Kawasaki and T.G. Langdon: Developing superplasticity and a deformation mechanism map for the Zn-Al eutectoid alloy processed by high-pressure torsion. Mater. Sci. Eng., A 528, 6140 (2011).

    Article  CAS  Google Scholar 

  38. M. Kawasaki and T.G. Langdon: Using deformation mechanism maps to depict flow processes in superplastic ultrafine-grained materials. J. Mater. Sci. 47, 7726 (2012).

    Article  CAS  Google Scholar 

  39. M. Kawasaki and T.G. Langdon: Grain boundary sliding in a superplastic Zn-Al alloy processed using severe plastic deformation. Mater. Trans. 49, 84 (2008).

    Article  CAS  Google Scholar 

  40. H. Ishikawa, F.A. Mohamed, and T.G. Langdon: The influence of strain rate on ductility in the superplastic Zn-22% Al eutectoid alloy. Philos. Mag. 32, 1269 (1975).

    Article  CAS  Google Scholar 

  41. F.A. Mohamed and T.G. Langdon: Creep at low stress levels in the superplastic Zn-22% Al eutectoid. Acta Metall. 23, 117 (1975).

    Article  CAS  Google Scholar 

  42. T.G. Langdon and F.A. Mohamed: The activation energies for superplasticity. Scr. Metall. 11, 575 (1977).

    Article  CAS  Google Scholar 

  43. F.A. Mohamed, S.A. Shei, and T.G. Langdon: The activation energies associated with superplastic flow. Acta Metall. 23, 1443 (1975).

    Article  CAS  Google Scholar 

  44. F.C. Liu and Z.Y. Ma: Contribution of grain boundary sliding in low-temperature superplasticity of ultrafine-grained aluminum alloys. Scr. Mater. 62, 125 (2010).

    Article  CAS  Google Scholar 

  45. F.A. Mohamed and M. Chauhan: Interpretation of the creep behavior of nanocrystalline Ni in terms of dislocation accommodated boundary sliding. Metall. Mater. Trans. A 37, 3555 (2006).

    Article  Google Scholar 

  46. F.A. Mohamed: Correlation between the deformation of nanostructured materials and the model of dislocation accommodated boundary sliding. Metall. Mater. Trans. A 39, 470 (2008).

    Article  CAS  Google Scholar 

  47. A.H. Chokshi: Diffusion creep in metals and ceramics: Extension to nanocrystals. Mater. Sci. Eng., A 483-484, 485 (2008).

    Article  CAS  Google Scholar 

  48. F.A. Mohamed and H. Yang: Deformation mechanisms in nanocrystalline materials. Metall. Mater. Trans. A 41, 823 (2010).

    Article  CAS  Google Scholar 

  49. F.A. Mohamed: Deformation mechanism maps for micro-grained, ultrafine-grained and nano-grained materials. Mater. Sci. Eng., A 528, 1431 (2011).

    Article  CAS  Google Scholar 

  50. N. Wang, Z. Wang, K.T. Aust, and U. Erb: Effect of grain size on mechanical properties of nanocrystalline materials. Acta Metall. Mater. 43, 519 (1995).

    Article  CAS  Google Scholar 

  51. H. Van Swygenhoven: Polycrystalline materials - grain boundaries and dislocations. Science 296, 66 (2002).

    Article  Google Scholar 

  52. V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, and H. Gleiter: Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation. Nat. Mater. 1, 1 (2002).

    Article  CAS  Google Scholar 

  53. H. Van Swygenhoven, P.M. Derlet, and G. Frøseth: Stacking fault energies and slip in nanocrystalline metals. Nat. Mater. 3, 399 (2004).

    Article  CAS  Google Scholar 

  54. M. Chen, E. Ma, K.J. Hemker, H. Sheng, Y. Wang, and X. Cheng: Deformation twinning in nanocrystalline aluminum. Science 300, 1275 (2003).

    Article  CAS  Google Scholar 

  55. X.Z. Liao, F. Zhou, E.J. Lavernia, D.W. He, and Y.T. Zhu: Deformation twins in nanocrystalline Al. Appl. Phys. Lett. 83, 5062 (2003).

    Article  CAS  Google Scholar 

  56. X.Z. Liao, Y.H. Zhao, S.G. Srinivasan, Y.T. Zhu, R.Z. Valiev, and D.V. Gunderov: Deformation twinning in nanocrystalline copper at room temperature and low strain rate. Appl. Phys. Lett. 84, 592 (2004).

    Article  CAS  Google Scholar 

  57. Y.T. Zhu, X.L. Wu, X.Z. Liao, J. Narayan, S.N. Mathaudhu, and L.J. Kecskés: Twinning partial multiplication at grain boundary in nanocrystalline fcc metals. Appl. Phys. Lett. 95, 031909 (2009).

    Article  CAS  Google Scholar 

  58. Y. Cao, Y.B. Wang, X.Z. Liao, M. Kawasaki, S.P. Ringer, T.G. Langdon, and Y.T. Zhu: Applied stress controls the production of nano-twins in coarse-grained metals. Appl. Phys. Lett. 101, 231903 (2012).

    Article  CAS  Google Scholar 

  59. R. Valiev: Nanostructuring of metals by severe plastic deformation for advanced properties. Nat. Mater. 3, 511 (2004).

    Article  CAS  Google Scholar 

  60. Z. Horita, D.J. Smith, M. Furukawa, M. Nemoto, R.Z. Valiev, and T.G. Langdon: An investigation of grain boundaries in submicrometer-grained Al-Mg solid solution alloys using high-resolution electron microscopy. J. Mater. Res. 11, 1880 (1996).

    Article  CAS  Google Scholar 

  61. Z. Horita, D.J. Smith, M. Nemoto, R.Z. Valiev, and T.G. Langdon: Observations of grain boundary structure in submicrometer-grained Cu and Ni using high-resolution electron microscopy. J. Mater. Res. 13, 446 (1998).

    Article  CAS  Google Scholar 

  62. N.Q. Chinh, P. Szommer, Z. Horita, and T.G. Langdon: Experimental evidence for grain boundary sliding in ultrafine-grained aluminum processed by severe plastic deformation. Adv. Mater. 18, 34 (2006).

    Article  CAS  Google Scholar 

  63. N.Q. Chinh, T. Györi, R.Z. Valiev, P. Szommer, G. Varga, K. Havancsák, and T.G. Langdon: Observations of unique plastic behavior in micro-pillars of an ultrafine-grained alloy. MRS Commun. 2, 75 (2012).

    Article  CAS  Google Scholar 

  64. N.Q. Chinh, T. Csanádi, T. Györi, R.Z. Valiev, B.B. Straumal, M. Kawasaki, and T.G. Langdon: Strain rate sensitivity studies in an ultrafine-grained Al-30wt.%Zn alloy using micro- and nano-indentation. Mater. Sci. Eng., A 543, 117 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Science Foundation of the United States under Grant No. DMR-1160966 and in part by the European Research Council under ERC Grant Agreement No. 267464-SPDMETALS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megumi Kawasaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawasaki, M., Langdon, T.G. The many facets of deformation mechanism mapping and the application to nanostructured materials. Journal of Materials Research 28, 1827–1834 (2013). https://doi.org/10.1557/jmr.2013.55

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.55

Navigation