Skip to main content
Log in

Evaluation of the Feasibility, Safety and Efficacy of the Use of Intravenous Infusions of Adenosine Triphosphate (ATP) in People Affected by Moderate to Severe Alzheimer’s Disease: A Double-Blind Masked Clinical Trial for Dose Finding

  • Original Research
  • Published:
The Journal of Prevention of Alzheimer's Disease Aims and scope Submit manuscript

Abstract

Background

There are currently no drug therapies modifying the natural history of patients suffering Alzheimer’s disease (AD). Most recent clinical trials in the field include only subjects in early stage of the disease, while patients with advanced AD are usually not represented.

Objectives

To evaluate the feasibility, safety and efficacy of systemic infusions of adenosine triphosphate (ATP) in patients with moderate to severe AD, and to select the minimum effective dose of infusion.

Design

A phase IIb, randomized, double-blind, placebo-controlled clinical trial investigates.

Participants

A total of 20 subjects with moderate or severe AD were included, 16 in the treatment group and 4 in the placebo group (4:1 randomization) at two dosage regimens, 6-hour or 24-hour infusions.

Results

The proof-of-concept study was successfully conducted, with no significant deviations from the study protocol and no serious adverse events reported. Regarding efficacy, only marginal differences were observed between ATP and placebo arms for H-MRS and MMSE variables.

Conclusions

Our study demonstrates that the use of ATP infusion as therapy is feasible and safe. Larger studies are however needed to assess the efficacy of ATP in moderate to severe AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

Availability of data and materials

The datasets used and/or analysed during the current study, as well as the two independent statistical analysis reports from the Medical Statistics Core Facility of IDIBAPS - Hospital Clínic Barcelona and the Andalusian Bioinformatics Research Centre (CAEBi), are available from the corresponding author on reasonable request.

References

  1. Livingston, G.; Huntley, J.; Sommerlad, A.; Ames, D.; Ballard, C.; Banerjee, S.; Brayne, C.; Burns, A.; Cohen-Mansfield, J.; Cooper, C.; et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 2020.

  2. Prince, M.; Jackson, J. World Alzheimer Report 2009; 2009

  3. Treusch, S.; Hamamichi, S.; Goodman, J.L.; Matlack, K.E.S.; Chung, C.Y.; Baru, V.; Shulman, J.M.; Parrado, A.; Bevis, B.J.; Valastyan, J.S.; et al. Functional links between Aβ toxicity, endocytic trafficking, and Alzheimer’s disease risk factors in yeast. Science (80-.). 2011, doi: https://doi.org/10.1126/science.1213210.

  4. Selkoe, D.J. Translating cell biology into therapeutic advances in Alzheimer’s disease. Nature 1999, 399, A23–A31, doi: https://doi.org/10.1038/399a023.

    Article  CAS  Google Scholar 

  5. Huang, Y.M.; Shen, J.; Zhao, H.L. Major Clinical Trials Failed the Amyloid Hypothesis of Alzheimer’s Disease. J. Am. Geriatr. Soc. 2019, doi: https://doi.org/10.1111/jgs.15830.

  6. Antúnez, C.; Boada, M.; González-Pérez, A.; Gayán, J.; Ramírez-Lorca, R.; Marín, J.; Hernández, I.; Moreno-Rey, C.; Morón, F.J.; López-Arrieta, J.; et al. The membrane-spanning 4-domains, subfamily A (MS4A) gene cluster contains a common variant associated with Alzheimer’s disease. Genome Med. 2011, 3, 33, doi: https://doi.org/10.1186/gm249.

    Article  Google Scholar 

  7. Harold, D.; Abraham, R.; Hollingworth, P.; Sims, R.; Gerrish, A.; Hamshere, M.L.; Pahwa, J.S.; Moskvina, V.; Dowzell, K.; Williams, A.; et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat. Genet. 2009, doi: https://doi.org/10.1038/ng.440.

  8. Kunkle, B.W.; Grenier-Boley, B.; Sims, R.; Bis, J.C.; Damotte, V.; Naj, A.C.; Boland, A.; Vronskaya, M.; van der Lee, S.J.; Amlie-Wolf, A.; et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat. Genet. 2019, 51, 414–430, doi: https://doi.org/10.1038/s41588-019-0358-2.

    CAS  Google Scholar 

  9. Hollingworth, P.; Harold, D.; Sims, R.; Gerrish, A.; Lambert, J.C.; Carrasquillo, M.M.; Abraham, R.; Hamshere, M.L.; Pahwa, J.S.; Moskvina, V.; et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat. Genet. 2011, doi: https://doi.org/10.1038/ng.803.

  10. Lambert, J.C.; Heath, S.; Even, G.; Campion, D.; Sleegers, K.; Hiltunen, M.; Combarros, O.; Zelenika, D.; Bullido, M.J.; Tavernier, B.; et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat. Genet. 2009, doi: https://doi.org/10.1038/ng.439.

  11. Naj, A.C.; Jun, G.; Beecham, G.W.; Wang, L.S.; Vardarajan, B.N.; Buros, J.; Gallins, P.J.; Buxbaum, J.D.; Jarvik, G.P.; Crane, P.K.; et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat. Genet. 2011, 43, 436–443, doi: https://doi.org/10.1038/ng.801.

    CAS  Google Scholar 

  12. Seshadri, S.; Fitzpatrick, A.L.; Ikram, M.A.; DeStefano, A.L.; Gudnason, V.; Boada, M.; Bis, J.C.; Smith, A. V.; Carassquillo, M.M.; Lambert, J.C.; et al. Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA - J. Am. Med. Assoc. 2010, doi: https://doi.org/10.1001/jama.2010.574.

  13. Bellenguez, C.; Küçükali, F.; Jansen, I.; Andrade, V.; Moreno-grau, S. New insights on the genetic etiology of Alzheimer’s and related dementia. MedRxiv 2020.

  14. Jansen, I.E.; Savage, J.E.; Watanabe, K.; Bryois, J.; Williams, D.M.; Steinberg, S.; Sealock, J.; Karlsson, I.K.; Hägg, S.; Athanasiu, L.; et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat. Genet. 2019, doi: https://doi.org/10.1038/s41588-018-0311-9.

  15. Lambert, J.C.; Ibrahim-Verbaas, C.A.; Harold, D.; Naj, A.C.; Sims, R.; Bellenguez, C.; Jun, G.; DeStefano, A.L.; Bis, J.C.; Beecham, G.W.; et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat. Genet. 2013, doi: https://doi.org/10.1038/ng.2802.

  16. Witoelar, A.; Rongve, A.; Almdahl, I.S.; Ulstein, I.D.; Engvig, A.; White, L.R.; Selbæk, G.; Stordal, E.; Andersen, F.; Brækhus, A.; et al. Meta-analysis of Alzheimer’s disease on 9,751 samples from Norway and IGAP study identifies four risk loci. Sci. Rep. 2018, doi: https://doi.org/10.1038/s41598-018-36429-6.

  17. Boada, M.; Antúnez, C.; Ramírez-Lorca, R.; Destefano, A.L.L.; González-Pérez, A.; Gayán, J.; López-Arrieta, J.; Ikram, M.A.A.; Hernández, I.; Marín, J.; et al. ATP5H/KCTD2 locus is associated with Alzheimer’s disease risk. Mol. Psychiatry 2014, 19, doi: https://doi.org/10.1038/mp.2013.86.

  18. Milton, S.L.; Prentice, H.M. Beyond anoxia: The physiology of metabolic downregulation and recovery in the anoxia-tolerant turtle. Comp. Biochem. Physiol. - A Mol. Integr. Physiol. 2007, 147, 277–290.

    Google Scholar 

  19. Davis, J.N.; Hunnicutt, E.J.; Chisholm, J.C. A mitochondrial bottleneck hypothesis of Alzheimer’s disease. Mol. Med. Today 1995, 1, 240–247.

    CAS  Google Scholar 

  20. Blass, J.P.; Sheu, R.K.F.; Gibson, G.E. Inherent abnormalities in energy metabolism in Alzheimer disease: Interaction with cerebrovascular compromise. In Proceedings of the Annals of the New York Academy of Sciences; New York Academy of Sciences, 2000; Vol. 903, pp. 204–221.

  21. Erol, A. An integrated and unifying hypothesis for the metabolic basis of sporadic Alzheimer’s disease. J. Alzheimer’s Dis. 2008, 13, 241–253.

    Article  CAS  Google Scholar 

  22. Demetrius, L.A.; Driver, J. Alzheimer’s as a metabolic disease. Biogerontology 2013, 14, 641–649.

    Article  CAS  Google Scholar 

  23. Ebanks, B.; Ingram, T.L.; Chakrabarti, L. ATP synthase and Alzheimer’s disease: Putting a spin on the mitochondrial hypothesis. Aging (Albany. NY). 2020, 12, 16647–16662, doi: https://doi.org/10.18632/aging.103867.

    CAS  Google Scholar 

  24. Kosenko, E.; Tikhonova, L.; Alilova, G.; Urios, A.; Montoliu, C. The Erythrocytic Hypothesis of Brain Energy Crisis in Sporadic Alzheimer Disease: Possible Consequences and Supporting Evidence. J. Clin. Med. 2020, 9, 206, doi: https://doi.org/10.3390/jcm9010206.

    CAS  Google Scholar 

  25. Blonz, E.R. Alzheimer’s Disease as the Product of a Progressive Energy Deficiency Syndrome in the Central Nervous System: The Neuroenergetic Hypothesis. J. Alzheimer’s Dis. 2017, 60, 1223–1229, doi: https://doi.org/10.3233/JAD-170549.

    Article  Google Scholar 

  26. Pelleg, A.; Kutalek, S.P.; Flammang, D.; Benditt, D. ATPaceTM: injectable adenosine 5′-triphosphate: Diagnostic and therapeutic indications. Purinergic Signal. 2012.

  27. Beijer, S.; Van Rossum, E.; Hupperets, P.S.; Spreeuwenberg, C.; Van Beuken, M. Den; Winkens, R.A.; Ars, L.; Van Den Borne, B.E.; De Graeff, A.; Dagnelie, P.C. Application of adenosine 5’-triphosphate (ATP) infusions in palliative home care: Design of a randomized clinical trial. BMC Public Health 2007, doi: https://doi.org/10.1186/1471-2458-7-4.

  28. Agteresch, H.J.; Dagnelie, P.C.; Van Der Gaast, A.; Stijnen, T.; Wilson, J.H.P. Randomized clinical trial of adenosine 5′-triphosphate in patients with advanced non-small-cell lung cancer. J. Natl. Cancer Inst. 2000, 92, 321–328, doi: https://doi.org/10.1093/jnci/92.4.321.

    Article  CAS  Google Scholar 

  29. Beijer, S.; Hupperets, P.S.; Van Den Borne, B.E.E.M.; Wijckmans, N.E.G.; Spreeuwenberg, C.; Van Den Brandt, P.A.; Dagnelie, P.C. Randomized clinical trial on the effects of adenosine 5′-triphosphate infusions on quality of life, functional status, and fatigue in preterminal cancer patients. J. Pain Symptom Manage. 2010, 40, 520–530, doi: https://doi.org/10.1016/j.jpainsymman.2010.01.023.

    Article  CAS  Google Scholar 

  30. Traylor, M.; Adib-Samii, P.; Harold, D.; AdibSamii, P.; Harold, D.; Dichgans, M.; Williams, J.; Lewis, C.M.; Markus, H.S.; Fornage, M.; et al. Shared genetic contribution to ischemic stroke and Alzheimer’s disease. Ann. Neurol. 2016, doi: https://doi.org/10.1002/ana.24621.

  31. Plant, L.D.; Webster, N.J.; Boyle, J.P.; Ramsden, M.; Freir, D.B.; Peers, C.; Pearson, H.A. Amyloid β peptide as a physiological modulator of neuronal ‘A’-type K+ current. Neurobiol. Aging 2006, doi: https://doi.org/10.1016/j.neurobiolaging.2005.09.038.

  32. Tomimoto, H.; Wakita, H.; Akiguchi, I.; Nakamura, S.; Kimura, J. Temporal profiles of accumulation of amyloid β/A4 protein precursor in the gerbil after graded ischemic stress. J. Cereb. Blood Flow Metab. 1994, doi: https://doi.org/10.1038/jcbfm.1994.70.

  33. Yu, H.; Lin, X.; Wang, D.; Zhang, Z.; Guo, Y.; Ren, X.; Xu, B.; Yuan, J.; Liu, J.; Spencer, P.S.; et al. Mitochondrial molecular abnormalities revealed by proteomic analysis of hippocampal organelles of mice triple transgenic for alzheimer disease. Front. Mol. Neurosci. 2018, doi: https://doi.org/10.3389/fnmol.2018.00074.

  34. Liu, D.; Pitta, M.; Lee, J.H.; Ray, B.; Lahiri, D.K.; Furukawa, K.; Mughal, M.; Jiang, H.; Villarreal, J.; Cutler, R.G.; et al. The KATP channel activator diazoxide ameliorates amyloid-β and Tau pathologies and improves memory in the 3xTgAD mouse model of Alzheimer’s disease. J. Alzheimer’s Dis. 2010, doi: https://doi.org/10.3233/JAD-2010-101017.

  35. Agteresch, H.J.; Dagnelie, P.C.; Rietveld, T.; Van Den Berg, J.W.O.; Danser, A.H.J.; Wilson, J.H.P. Pharmacokinetics of intravenous ATP in cancer patients. Eur. J. Clin. Pharmacol. 2000, doi: https://doi.org/10.1007/s002280050719.

  36. Beijer, S.; Gielisse, E.A.R.; Hupperets, P.S.; Van Den Borne, B.E.E.M.; Van Den Beuken-Van Everdingen, M.; Nijziel, M.R.; Van Henten, A.M.J.; Dagnelie, P.C. Intravenous ATP infusions can be safely administered in the home setting: A study in pre-terminal cancer patients. Invest. New Drugs 2007, doi: https://doi.org/10.1007/s10637-007-9076-1.

  37. Albanese, E.; Taylor, C.; Siervo, M.; Stewart, R.; Prince, M.J.; Acosta, D. Dementia severity and weight loss: A comparison across eight cohorts. the 10/66 study. Alzheimer’s Dement. 2013, 9, 649–656, doi: https://doi.org/10.1016/j.jalz.2012.11.014.

    Article  Google Scholar 

  38. Tamura, B.K.; Masaki, K.H.; Blanchette, P. Weight loss in patients with Alzheimer’s disease. J. Nutr. Elder. 2007, 26, 21–38, doi: https://doi.org/10.1300/J052v26n03_02.

    Article  Google Scholar 

  39. Hanson, L.C.; Gilliam, R.; Tae Joon Lee Successful clinical trial research in nursing homes: The improving decision-making study. Clin. Trials 2010, 7, 735–743, doi: https://doi.org/10.1177/1740774510380241.

    Article  Google Scholar 

  40. Banzi, R.; Camaioni, P.; Tettamanti, M.; Bertele’, V.; Lucca, U. Older patients are still under-represented in clinical trials of Alzheimer’s disease. Alzheimers. Res. Ther. 2016, 8, 32, doi: https://doi.org/10.1186/s13195-016-0201-2.

    Google Scholar 

  41. Hüll, M.; Berger, M.; Heneka, M. Disease-modifying therapies in Alzheimer’s disease: How far have we come? Drugs 2006, doi: https://doi.org/10.2165/00003495-200666160-00004.

  42. Boada, M.; López, O.; Núñez, L.; Szczepiorkowski, Z.M.; Torres, M.; Grifols, C.; Páez, A. Plasma exchange for Alzheimer’s disease Management by Albumin Replacement (AMBAR) trial: Study design and progress. Alzheimer’s Dement. (New York, N. Y.) 2019, 5, 61–69, doi: https://doi.org/10.1016/J.TRCI.2019.01.001.

    Article  Google Scholar 

  43. Terni, B.; Boada, J.; Portero-Otin, M.; Pamplona, R.; Ferrer, I. Mitochondrial ATP-synthase in the entorhinal cortex is a target of oxidative stress at stages I/II of alzheimer’s disease pathology. Brain Pathol. 2010, doi: https://doi.org/10.1111/j.1750-3639.2009.00266.x.

  44. Liang, W.S.; Reiman, E.M.; Valla, J.; Dunckley, T.; Beach, T.G.; Grover, A.; Niedzielko, T.L.; Schneider, L.E.; Mastroeni, D.; Caselli, R.; et al. Alzheimer’s disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons. Proc. Natl. Acad. Sci. U. S. A. 2008, doi: https://doi.org/10.1073/pnas.0709259105.

  45. Bell, S.M.; Barnes, K.; De Marco, M.; Shaw, P.J.; Ferraiuolo, L.; Blackburn, D.J.; Venneri, A.; Mortiboys, H. Mitochondrial dysfunction in Alzheimer’s disease: A biomarker of the future? Biomedicines 2021, 9, 1–26, doi: https://doi.org/10.3390/biomedicines9010063.

    Article  Google Scholar 

  46. Adhihetty, P.J.; Beal, M.F. Creatine and Its Potential Therapeutic Value for Targeting Cellular Energy Impairment in Neurodegenerative Diseases. Neuromolecular Med. 2008, 10, 275, doi: https://doi.org/10.1007/S12017-008-8053-Y.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank patients and controls who participated in this project. We are indebted to the Trinitat Port-Carbó legacy and her family for their support of Fundació ACE research programs. A. R. has received support from CIBERNED (Instituto de Salud Carlos III (ISCIII), the EU/EFPIA Innovative Medicines Initiative Joint Undertaking, ADAPTED Grant No. 115975, from EXIT project, EU Euronanomed3 Program JCT2017 Grant No. AC17/00100, from PREADAPT project. Joint Program for Neurodegenerative Diseases (JPND) Grant No. AC19/00097, and from grants PI13/02434, PI16/01861 BA19/00020, and PI19/01301. Acción Estratégica en Salud, integrated in the Spanish National RCDCI Plan and financed by Instituto de Salud Carlos III (ISCIII)- Subdirección General de Evaluación and the Fondo Europeo de Desarrollo Regional (FEDER - “Una manera de Hacer Europa”), by Fundación bancaria “La Caixa” and Grífols SA (GR@ACE project).

Funding

This work has been supported by the Dirección General the Farmacia. Instituto de Salud Carlos III (ISCIII). Ministerio de Innovacion Ciencia y Universidades. Gobierno España. Grant number EC11-358 and Fundació ACE.

Author information

Authors and Affiliations

Authors

Contributions

AR conceived this treatment. AR, LT, MBo, MEP, PCD designed the research program and the clinical trial. DS, AL, GO, MBu, JP, MEP, CA, SYJ, FPB, implemented the clinical trial, study. AR, MES, FRT, FM, PCD and MBo interpreted the CT results. MES and AR wrote the manuscript and all authors revised the text and contributed to the ms editing.

Corresponding author

Correspondence to Agustín Ruiz.

Ethics declarations

This clinical trial was conducted in compliance with the declaration of Helsinki. All participants (or their legal representative) provided written informed consent prior to screening. The final study protocol and informed consent documentation were reviewed and approved by the Ethics Committee from Hospital Clinic (Barcelona). The Study was registered at the EU Clinical Trials Register (EudraCT: 2013-004593-95) and approved by the Spanish Agency for Medicines and Medical Devices (AEMPS).

Additional information

How to cite this article: A. Ruiz, D. Sánchez, A. Lafuente, et al. Evaluation of the Feasibility, Safety and Efficacy of the Use of Intravenous Infusions of Adenosine Triphosphate (ATP) in People Affected by Moderate to Severe Alzheimer’s Disease: A Double-Blind Masked Clinical Trial for Dose Finding. J Prev Alz Dis 2022;3(9):425-434; https://doi.org/10.14283/jpad.2022.38

Competing interests

The authors declare that they have no competing interests related to this manuscript. AR is member of the Scientific Advisory Board of Landsteiner Genmed and AMBAR program (Grifols). MES is member of the Scientific Advisory Board of Landsteiner Genmed.

Trial registration

EudraCT: 2013-004593-95. Registered 13th February 2014, https://www.clinicaltrialsregister.eu/ctr-search/trial/2013-004593-95/ES.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruiz, A., Sánchez, D., Lafuente, A. et al. Evaluation of the Feasibility, Safety and Efficacy of the Use of Intravenous Infusions of Adenosine Triphosphate (ATP) in People Affected by Moderate to Severe Alzheimer’s Disease: A Double-Blind Masked Clinical Trial for Dose Finding. J Prev Alzheimers Dis 9, 425–434 (2022). https://doi.org/10.14283/jpad.2022.38

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.14283/jpad.2022.38

Key words

Navigation