Skip to main content

Structural DNA Nanotechnology

An Overview

  • Protocol
NanoBiotechnology Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 303))

Abstract

Structural DNA nanotechnology uses unusual DNA motifs to build target shapes and arrangements. These unusual motifs are generated by reciprocal exchange of DNA backbones, leading to branched systems with many strands and multiple helical domains. The motifs may be combined by sticky-ended cohesion, involving hydrogen bonding or covalent interactions. Other forms of cohesion involve edge sharing or paranemic interactions of double helices. A large number of individual species have been developed by this approach, including polyhedral catenanes, such as a cube and a truncated octahedron; a variety of single-stranded knots; and Borromean rings. In addition to these static species, DNA-based nanomechanical devices have been produced that are targeted ultimately to lead to nanorobotics. Many of the key goals of structural DNA nanotechnology entail the use of periodic arrays. A variety of two-dimensional DNA arrays have been produced with tunable features, such as patterns and cavities. DNA molecules have been used successfully in DNA-based computation as molecular representations of Wang tiles, whose self-assembly can be programmed to perform a calculation. Structural DNA nanotechnology appears to be at the cusp of a truly exciting explosion of applications, which can be expected to occur by the end of the current decade.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Watson, J. D. and Crick, F. H. C. (1953) A structure for deoxyribose nucleic acid. Nature 171, 737–738.

    Article  PubMed  CAS  Google Scholar 

  2. Seeman, N. C. (1982) Nucleic acid junctions and lattices. J. Theor. Biol. 99, 237–247.

    Article  PubMed  CAS  Google Scholar 

  3. Robinson, B. H. and Seeman, N. C. (1987) The design of a biochip. Protein Eng. 1, 295–300.

    Article  PubMed  CAS  Google Scholar 

  4. Winfree, E. (1996) On the computational power of DNA annealing and ligation, in DNA Based Computing (Lipton, E. J. and Baum, E. B., eds.), American Mathematical Society, Providence, RI, pp. 199–219.

    Google Scholar 

  5. Seeman, N. C. (2000) In the nick of space: generalized nucleic acid complementarity and the development of DNA nanotechnology. Synlett 2000, 1536–1548.

    Article  Google Scholar 

  6. Cohen, S. N., Chang, A. C. Y., Boyer, H. W., and Helling, R. B. (1973) Construction of biologically functional bacterial plasmids in vitro. Proc. Nat. Acad. Sci. USA 70, 3240–3244.

    Article  PubMed  CAS  Google Scholar 

  7. Qiu, H., Dewan, J. C., and Seeman, N. C. (1997) A DNA decamer with a sticky end: the crystal structure of d-CGACGATCGT. J. Mol. Biol. 267, 881–898.

    Article  PubMed  CAS  Google Scholar 

  8. Zhang, X., Yan, H., Shen, Z., and Seeman, N. C. (2002) Paranemic cohesion of topologically-closed DNA molecules. J. Am. Chem. Soc. 124, 12,940–12,941.

    Article  PubMed  CAS  Google Scholar 

  9. Yan, H. and Seeman, N. C. (2003) Edge-sharing motifs in DNA nanotechnology. J. Supramol. Chem. 1, 229–237.

    Article  Google Scholar 

  10. Seeman, N. C. (2001) DNA nicks and nodes and nanotechnology. Nano Lett. 1, 22–26.

    Article  CAS  Google Scholar 

  11. Holliday, R. (1964) A mechanism for gene conversion in fungi. Genet. Res. 5, 282–304.

    Article  Google Scholar 

  12. Fu, T.-J. and Seeman, N. C. (1993) DNA double crossover structures. Biochem. 32, 3211–3220.

    Article  CAS  Google Scholar 

  13. Schwacha, A. and Kleckner, N. (1995) Identification of double Holliday junctions as intermediates in meiotic recombination. Cell 83, 783–791.

    Article  PubMed  CAS  Google Scholar 

  14. LaBean, T., Yan, H., Kopatsch, J., Liu, F., Winfree, E., Reif, J. H., and Seeman, N. C. (2000) The construction, analysis, ligation and self-assembly of DNA triple crossover complexes. J. Am. Chem. Soc. 122, 1848–1860.

    Article  CAS  Google Scholar 

  15. Yan, H., Zhang, X., Shen, Z., and Seeman, N. C. (2002) A robust DNA mechanical device controlled by hybridization topology. Nature 415, 62–65.

    Article  PubMed  CAS  Google Scholar 

  16. Zhang, Y. and Seeman, N. C. (1992) A solid-support methodology for the construction of geometrical objects from DNA. J. Am. Chem. Soc. 114, 2656–2663.

    Article  CAS  Google Scholar 

  17. Chen, J. and Seeman, N. C. (1991) The synthesis from DNA of a molecule with the connectivity of a cube. Nature 350, 631–633.

    Article  PubMed  CAS  Google Scholar 

  18. Zhang, Y. and Seeman, N. C. (1994) The construction of a DNA truncated octahedron. J. Am. Chem. Soc. 116, 1661–1669.

    Article  CAS  Google Scholar 

  19. Qi, J., Li, X., Yang, X., and Seeman, N. C. (1996) The ligation of triangles built from bulged three-arm DNA branched junctions. J. Am. Chem. Soc. 118, 6121–6130.

    Article  CAS  Google Scholar 

  20. Hagerman, P. J. (1988) Flexibility of DNA. Ann. Rev. Biophys. Chem. 17, 265–286.

    Article  CAS  Google Scholar 

  21. Seeman, N. C., Rosenberg, J. M., and Rich, A. (1976) Sequence specific recognition of double helical nucleic acids by proteins. Proc. Nat. Acad. Sci. USA 73, 804–808.

    Article  PubMed  CAS  Google Scholar 

  22. Freier, S. M. and Altmann, K.-H. (1997) The ups and down of nucleic acid duplex stability. Nucleic Acids Res. 25, 4229–4243.

    Article  Google Scholar 

  23. Nielsen, P. E., Egholm, M., Berg, R. H., and Buchardt, O. (1991) Sequence selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254, 1497–1500.

    Article  PubMed  CAS  Google Scholar 

  24. Kallenbach, N. R., Ma, R.-I., and Seeman, N. C. (1983) An immobile nucleic acid junction constructed from oligonucleotides. Nature 305, 829–831.

    Article  CAS  Google Scholar 

  25. Seeman, N. C. (1990) De novo design of sequences for nucleic acid structure engineering. J. Biomol. Struct. Dynanics 8, 573–581.

    CAS  Google Scholar 

  26. Ma, R. I., Kallenbach, N. R., Sheardy, R. D., Petrillo, M. L., and Seeman, N. C. (1986) Three arm nucleic acid junctions are flexible. Nucleic Acids Res. 14, 9745–9753.

    Article  PubMed  CAS  Google Scholar 

  27. Wang, Y., Mueller, J. E., Kemper, B., and Seeman, N. C. (1991) The assembly and characterization of 5-arm and 6-arm DNA junctions. Biochemistry 30, 5667–5674.

    Article  PubMed  CAS  Google Scholar 

  28. Petrillo, M. L., Newton, C. J., Cunningham, R. P., Ma, R.-I., Kallenbach, N. R., and Seeman, N. C. (1988) Ligation and flexibility of four-arm DNA junctions. Biopolymers 27, 1337–1352.

    Article  PubMed  CAS  Google Scholar 

  29. Eis, P. S. and Millar, D. P. (1993) Conformational distributions of a four-way DNA junction revealed by time-resolved fluorescence resonance energy transfer. Biochemistry 32, 13,852–13,860.

    Article  PubMed  CAS  Google Scholar 

  30. Chen, J. and Seeman, N. C. (1991) The electrophoretic properties of a DNA cube and its sub-structure catenanes. Electrophoresis 12, 607–611.

    Article  PubMed  CAS  Google Scholar 

  31. Seeman, N. C. (1992) The design of single-stranded nucleic acid knots. Mol. Eng. 2, 297–307.

    Article  CAS  Google Scholar 

  32. Du, S. M., Stollar, B. D., and Seeman, N. C. (1995) A synthetic DNA molecule in three knotted topologies. J. Am. Chem. Soc. 117, 1194–1200.

    Article  CAS  Google Scholar 

  33. Mao, C., Sun, W., and Seeman, N. C. (1997) Assembly of Borromean rings from DNA. Nature 386, 137–138.

    Article  PubMed  CAS  Google Scholar 

  34. Li, X., Yang, X., Qi, J., and Seeman, N. C. (1996) Antiparallel DNA double crossover molecules as components for nanoconstruction. J. Am. Chem. Soc. 118, 6131–6140.

    Article  CAS  Google Scholar 

  35. Sa-Ardyen, P., Vologodskii, A. V., and Seeman, N. C. (2003) The flexibility of DNA double crossover molecules. Biophys. J. 84, 3829–3837.

    Article  PubMed  CAS  Google Scholar 

  36. Winfree, E., Liu, F., Wenzler, L. A., and Seeman, N. C. (1998) Design and selfassembly of two-dimensional DNA crystals. Nature 394, 539–544.

    Article  PubMed  CAS  Google Scholar 

  37. Liu, F., Sha, R., and Seeman, N. C. (1999) Modifying the surface features of twodimensional DNA crystals. J. Am. Chem. Soc. 121, 917–922.

    Article  CAS  Google Scholar 

  38. Mao, C., Sun, W., and Seeman, N. C. (1999) Designed two-dimensional DNA Holliday junction arrays visualized by atomic force microscopy. J. Am. Chem. Soc. 121, 5437–5443.

    Article  CAS  Google Scholar 

  39. Sha, R., Liu, F., Millar, D. P., and Seeman, N. C. (2000) Atomic force microscopy of parallel DNA branched junction arrays. Chem. Biol. 7, 743–751.

    Article  PubMed  CAS  Google Scholar 

  40. Sha, R., Liu, F., and Seeman, N. C. (2002) Atomic force measurement of the interdomain angle in symmetric Holliday junctions. Biochemistry 41, 5950–5955.

    Article  PubMed  CAS  Google Scholar 

  41. Yang, X., Vologodskii, A. V., Liu, B., Kemper, B., and Seeman, N. C. (1998) Torsional control of double stranded DNA branch migration. Biopolymers 45, 69–83.

    Article  PubMed  CAS  Google Scholar 

  42. Rich, A., Nordheim, A., and Wang, A. H.-J. (1984) The chemistry and biology of left-handed Z-DNA. Ann. Rev. Biochem. 53, 791–846.

    Article  PubMed  CAS  Google Scholar 

  43. Mao, C., Sun, W., Shen, Z., and Seeman, N. C. (1999) A DNA nanomechanical device based on the B-Z transition. Nature 397, 144–146.

    Article  PubMed  CAS  Google Scholar 

  44. Yurke, B., Turberfield, A. J., Mills, A. P. Jr., Simmel, F. C., and Neumann, J. L. (2000) A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608.

    Article  PubMed  CAS  Google Scholar 

  45. Adleman, L. (1994) Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024.

    Article  PubMed  CAS  Google Scholar 

  46. GrĂĽnbaum, B. and Shephard, G. C. (1986) Tilings & Patterns, Freeman, New York.

    Google Scholar 

  47. Mao, C., LaBean, T., Reif, J. H., and Seeman, N. C. (2000) Logical computation using algorithmic self-assembly of DNA triple crossover molecules. Nature 407, 493–496.

    Article  PubMed  CAS  Google Scholar 

  48. Seeman, N. C. (1991) The construction of 3-D stick figures from branched DNA. DNA Cell Biol. 10, 475–486.

    Article  PubMed  CAS  Google Scholar 

  49. Eckardt, H. E., Naumann, K., Pankau, W. M., Rein, M., Schweitzer, M., Windhab, N., and von Kiedrowski, G. (2002) Chemical copying of connectivity. Nature 420, 286.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I am grateful to all of my students, postdocs, and collaborators for their contributions to the founding of structural DNA nanotechnology. This research was supported by grants GM-29554 from the National Institute of General Medical Sciences, N00014-98-1-0093 from the Office of Naval Research; DMI-0210844, EIA-0086015, DMR-01138790, and CTS-0103002 from the National Science Foundation, and F30602-01-2-0561 from DARPA/AFSOR.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Seeman, N.C. (2005). Structural DNA Nanotechnology. In: Rosenthal, S.J., Wright, D.W. (eds) NanoBiotechnology Protocols. Methods in Molecular Biology™, vol 303. Humana Press. https://doi.org/10.1385/1-59259-901-X:143

Download citation

  • DOI: https://doi.org/10.1385/1-59259-901-X:143

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-276-6

  • Online ISBN: 978-1-59259-901-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics