Skip to main content
Log in

The design of single-stranded nucleic acid knots

  • Published:
Molecular Engineering

Abstract

A general strategy is described for the synthesis of single-stranded nucleic acid knots. Control of nucleic acid sequence is used to direct the formation of secondary structures that produce the target topology. The key feature of the strategy is the equation of a half-turn of double helical DNA or RNA with a node in a knot. By forming nodes from complementary DNA sequences, it appears possible to direct the assembly of any simple knot. Stabilization of individual nodes may be achieved by constructing them from long regions containing both B-DNA and Z-DNA. Control over the braiding of DNA that acts as a link between node-forming domains can be realized by condensing the nodes into well-defined DNA structures, such as extended domains of linear duplex, branched junctions, antijunctions or mesojunctions. Further topological control may be derived from the pairing of linker regions to complementary single-stranded molecules, thereby preventing them from braiding in an undesirable fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. L. Frisch and E. Wasserman,J. Am. Chem. Soc. 83, 3789 (1961).

    Google Scholar 

  2. H. K. Moffat,Nature 347, 367 (1990).

    Google Scholar 

  3. D. M. Walba,Tetrahedron 41, 3161 (1985).

    Google Scholar 

  4. J.-P. Sauvage,Accts. of Chem. Res. 23, 319 (1990).

    Google Scholar 

  5. C. O. Dietrich-Buchecker, J. Guilham, C. Pascard, and J.-P. Sauvage,Ang. Chem., Int. Ed. 29, 556 (1990).

    Google Scholar 

  6. K. Mizuuchi, L. M. Fisher, M. H. O'Dea, and M. Gellert,Proc. Nat. Acad. Sci. (U.S.A.)77, 1847 (1980).

    Google Scholar 

  7. S. A. Wasserman and N. R. Cozzarelli,Science 232, 951 (1986).

    Google Scholar 

  8. J. D. Griffith and H. A. Nash,Nat. Acad. Sci. (U.S.A.)82, 3124 (1985).

    Google Scholar 

  9. L. F. Liu, C. C. Liu, and B. M. Alberts,Cell 19, 697 (1980).

    Google Scholar 

  10. L. F. Liu, R. E. Depew, and J. C. Wang,J. Mol. Biol. 106, 439 (1976).

    Google Scholar 

  11. J. C. Wang,Sci. Am. 247, 94 (1982).

    Google Scholar 

  12. N. C. Seeman,J. Biomol. Str. & Dyns. 5, 997 (1988).

    Google Scholar 

  13. J. E. Mueller, S. M. Du, and N. C. Seeman,J. Am. Chem. Soc. 113, 6306 (1991).

    Google Scholar 

  14. S. M. Du and N. C. Seeman,J. Am. Chem. Soc., in press.

  15. V. F. R. Jones,Bull. Am. Mat. Soc. 12, 103 (1985).

    Google Scholar 

  16. J. H. van de Sande, N. B. Ramsing, M. W. Germann, W. Elhorst, B. W. Kalisch, E. von Kitzing, R. T. Pon, R. C. Clegg, and T. M. Jovin,Science 241, 551 (1988).

    Google Scholar 

  17. N. C. Seeman,J. Biomol. Str. & Dyns. 8, 573 (1990).

    Google Scholar 

  18. J. Chen and N. C. Seeman,Nature 350, 361 (1991).

    Google Scholar 

  19. G. W. Ashley and D. M. Kushlan,Biochemistry 30, 2927 (1991).

    Google Scholar 

  20. A. Rich, A. Nordheim, and A. H.-J. Wang,Ann. Rev. Biochem. 53, 791 (1984).

    Google Scholar 

  21. T. M. Jovin, L. P. McIntosh, D. J. Arndt-Jovin, D. A. Zarling, M. Robert-Nicoud, J. H. van de Sande, K. F. Jorgenson and F. Eckstein,J. Biomol. Str. & Dyns. 1, 21 (1983).

    Google Scholar 

  22. M. Behe and G. Felsenfeld,Proc. Nat. Acad. Sci. (U.S.A.)78, 1619 (1981).

    Google Scholar 

  23. K. B. Hall, P. Cruz, I. Tinoco, T. M. Jovin, and J. H. van de Sande,Nature 311, 584 (1984).

    Google Scholar 

  24. S. A. Winkle and R. D. Sheardy,Biochemistry 29, 6514 (1990).

    Google Scholar 

  25. N. C. Seeman,J. Theor. Biol. 99, 237 (1982).

    Google Scholar 

  26. S. M. Du, S. Zhang, and N. C. Seeman,Bikochemistry, is press.

  27. P. J. Hagerman,Ann. Rev. Biophys. & Biophys. Chem. 17, 265 (1988).

    Google Scholar 

  28. R. Holliday,Genet. Res. 5, 282 (1964).

    Google Scholar 

  29. Y. Wang, J. E. Mueller, B. Kemper, and N. C. Seeman,Biochemistry 30, 5667 (1991).

    Google Scholar 

  30. N. C. Seeman and N. R. Kallenbach, in J. J. Stezowski, J.-L. Huang, and M.-C. Shao (eds.),Molecular Structure, Chemical Reactivity and Biological Activity. Oxford University Press, Oxford, p. 189 (1988).

    Google Scholar 

  31. N. B. Leontis, W. Kwok, and J. S. Newman,Nucleic Acids Res. 19, 759 (1991).

    Google Scholar 

  32. R.-I. Ma, N. R. Kallenbach, R. D. Sheardy, M. L. Petrillo, and N. C. Seeman,Nucl. Acids Res. 14, 9745 (1986).

    Google Scholar 

  33. M. L. Petrillo, C. J. Newton, R. P. Cunningham, R.-I. Ma, N. R. Kallenbach, and N. C. Seeman,Biopolymers 27, 1337 (1988).

    Google Scholar 

  34. J. H. White, K. C. Millett, and N. R. Cozzarelli,J. Mol. Biol. 197, 585 (1987).

    Google Scholar 

  35. R. Jin, K. J. Breslauer, R. A. Jones, and B. L. Gaffney,Science 250, 543 (1990).

    Google Scholar 

  36. G. Felsenfeld, D. R. Davies, and A. Rich,J. Am. Chem. Soc. 79, 2023 (1957).

    Google Scholar 

  37. N. C. Seeman,DNA & Cell Biol. 10, 475 (1991).

    Google Scholar 

  38. E. Jablonski, E. W. Mooman, R. H. Tullis, and J. L. Ruth,Nucl. Acids Res. 14, 6115 (1986).

    Google Scholar 

  39. M. Wolters and B. Wittig,Nucleic Acids Res. 13, 5163 (1989).

    Google Scholar 

  40. J. Jenkins, Master's Thesis, University of California (1990).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seeman, N.C. The design of single-stranded nucleic acid knots. Mol Eng 2, 297–307 (1992). https://doi.org/10.1007/BF00999532

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00999532

Key words

Navigation