Skip to main content

Use of PhoN Phosphatase to Remediate Heavy Metals

  • Protocol
Microbial Processes and Products

Part of the book series: Methods in Biotechnology ((MIBT,volume 18))

Abstract

Heavy metals are removed by Serratia sp. via the activity of a cell-bound, atypical, PhoN-type acid phosphatase enzyme, which liberates HPO42- from a suitable organic phosphate donor, with the stoichiometric precipitation of heavy-metal cations (M2+) as insoluble MHPO4 at the cell surface. The present chapter describes the production of Serratia sp. cells (and biofilm) using different growth conditions (i.e., in media containing glycerol and lactose as the carbon source and as batch and continuous cultures). Also, it describes methods of immobilization of cells by entrapment, using polyurethane foam as the matrix, and by covalent coupling, using silanized ceramic Raschig rings and glutaraldehyde as a crosslinking agent. The removal of U from solution using a packed-bed reactor system is described as well as the removal of Ni2+or Co2+using a hybrid bioaccumulative and chemisorptive mechanism, known as “microbially enhanced chemisorption of heavy metals.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pattanapipitpaisal, P., Mabbett, A. N., Finlay, J. A., et al. (2002) Reduction of Cr(VI) and bioaccumulation of chromium by Gram positive and Gram negative microorganisms not previously exposed to Cr-stress. Environ. Technol. 23, 731–745.

    Article  PubMed  CAS  Google Scholar 

  2. Jeong, B. C. and Macaskie, L. E. (1995) PhoN-type acid phosphatase of a heavy metal-accumulating Citrobacter sp.: resistance to heavy metals and affinity towards phosphomonoester substrates. FEMS Microbiol. Lett. 130, 211–214.

    Article  CAS  Google Scholar 

  3. Jeong, B. C., Poole, P. S., Willis, A. C., and Macaskie, L. E. (1998) Purification and characterization of acid-type phosphatase from a heavy-metal-accumulating Citrobacter sp. Arch. Microbiol. 169, 166–173.

    Article  PubMed  CAS  Google Scholar 

  4. Jeong, B. C. and Macaskie, L. E. (1999) Production of two phosphatases by Citrobacter sp. grown in batch and continuous culture. Enzyme Microb. Technol. 24, 218–224.

    Article  CAS  Google Scholar 

  5. Basnakova, G., Stephens, E. R., Thaller, M. C., Rossolini, G. M., and Macaskie, L. E. (1998) The use of Escherichia coli bearing a phoN gene for the removal of uranium and nickel from aqueous flows. Appl. Microbiol. Biotechnol. 50, 266–272.

    Article  PubMed  CAS  Google Scholar 

  6. Macaskie, L. E., Empson, R. M., Cheetham, A. K., Grey, C. P., and Skarnulis, A. J. (1992) Uranium bioaccumulation by a Citrobacter sp. as a result of enzymatically mediated growth of polycrystalline HUO2PO4. Science 257, 782–784.

    Article  PubMed  CAS  Google Scholar 

  7. Yong, P. and Macaskie, L. E. (1995) Enhancement of uranium bioaccumulation by a Citrobacter sp. via enzymatically-mediated growth of polycrystalline NH4UO2PO4. J. Chem. Technol. Biotechnol. 63, 101–108.

    Article  CAS  Google Scholar 

  8. Macaskie, L. E. (1990) An immobilized cell bioprocess for the removal of heavy metals from aqueous flows. J. Chem. Technol. Biotechnol. 49, 357–379.

    Article  PubMed  CAS  Google Scholar 

  9. Macaskie, L. E., Yong, P., Doyle, T. C., Roig, M. G., Diaz, M., and Manzano, T. (1997) Bioremediation of uranium-bearing wastewater: biochemical and chemical factors influencing bioprocess applications. Biotechnol. Bioeng. 53, 100–109.

    Article  PubMed  CAS  Google Scholar 

  10. Bonthrone, K. M., Basnakova, G., Lin, F., and Macaskie, L. E. (1996) Bioaccumulation of nickel by intercalation into polycrystalline hydrogen uranyl phosphate deposited via an enzymatic mechanism. Nat. Biotechnol. 14, 635–638.

    Article  PubMed  CAS  Google Scholar 

  11. Basnakova, G. and Macaskie, L. E. (1997) Microbially enhanced chemiosorption of nickel into biologically synthesized hydrogen uranyl phosphate: a novel system for the removal and recovery of metals from aqueous solutions. Biotechnol. Bioeng. 54, 319–328.

    Article  PubMed  CAS  Google Scholar 

  12. Basnakova, G., Spencer, A. J., Palsgard, E., Grime, G. W., and Macaskie, L. E. (1998) Identification of the nickel uranyl phosphate deposits on Citrobacter sp. cells by electron microscopy with electron probe X-ray microanalysis and by proton-induced X-ray emission analysis. Environ. Sci. Technol. 32, 760–765.

    Article  CAS  Google Scholar 

  13. Basnakova, G., Finlay, J. A., and Macaskie, L. E. (1998) Nickel accumulation by immobilised biofilm of Citrobacter sp. containing cell-bound polycrystalline hydrogen uranyl phosphate. Biotechnol. Lett. 20, 949–952.

    Article  CAS  Google Scholar 

  14. Clearfield, A. (1988) Role of ion exchange in solid-state chemistry. Chem. Rev. 88, 125–148.

    Article  CAS  Google Scholar 

  15. Paterson-Beedle, M. and Macaskie, L. E. (2004) Removal of cobalt, strontium and caesium from aqueous solutions using native biofilm of Serratia sp. and biofilm pre-coated with hydrogen uranyl phosphate, in Proceedings 15th International Biohydrometallurgy Symposium, Athens, (Tsezos, M., et al. eds.), Elsevier, in press.

    Google Scholar 

  16. Finlay, J. A., Allan, V. J. M., Conner, A., Callow, M. E., Basnakova, G., and Macaskie, L. E. (1999) Phosphatase release and heavy metal accumulation by biofilm-immobilised and chemically-coupled cells of a Citrobacter sp. pre-grown in continuous culture. Biotechnol. Bioeng. 63, 87–97.

    Article  PubMed  CAS  Google Scholar 

  17. Macaskie, L. E., Hewitt, C. J., Shearer, J. A., and Kent, C. A. (1995) Biomass production for the removal of heavy metals from aqueous solutions at low pH using growth-decoupled cells of a Citrobacter sp. Int. Biodeterior. Biodegrad. 35, 73–92.

    Article  CAS  Google Scholar 

  18. Bolton, P. G. and Dean, A. C. R. (1972) Phosphatase synthesis in Klebsiella (Aerobacter) aerogenes growing in continuous culture. Biochem. J. 127, 87–96.

    PubMed  CAS  Google Scholar 

  19. Jeong, B. C. (1992) Studies on the atypical phosphatase of a heavy metal accumulating Citrobacter sp. D Phil thesis, University of Oxford, UK.

    Google Scholar 

  20. Yong, P., Eccles, H., and Macaskie, L. E. (1996) Determination of uranium, thorium and lanthanum in mixed solutions using simultaneous spectrophotometry. Anal. Chim. Acta 329, 173–179.

    Article  CAS  Google Scholar 

  21. Wei, F.-S., Qu, P.-H., Shen, N.-K., and Ying, F. (1981) Sensitive spectrophotomet-ric determination of nickel(II) with 2-(5-bromo-2-pyridylazo)-5-diethylaminophe-nol. Talanta 28, 189–191.

    Article  Google Scholar 

  22. Yong. P. and Macaskie, L. E. (1997) Effect of substrate concentration and nitrate inhibition on product release and heavy metal removal by Citrobacter sp. Biotechnol. Bioeng. 55, 821–830.

    Article  PubMed  CAS  Google Scholar 

  23. Onishi, H. (ed.) (1986) Photometric Determination of Traces of Metals, Part IIA: Individual Metals, Aluminium to Lithium, 4th ed., Wiley, New York, pp. 454–459.

    Google Scholar 

  24. Woods, G. (ed.) (1990) The ICI Polyurethanes Book, 2nd ed., Wiley, Chichester, pp. 27–29.

    Google Scholar 

  25. Cabral, J. M. S. and Kennedy, J. F. (1991) Covalent and coordination immobilisation of proteins, in Protein Immobilisation—Fundamentals and applications (Taylor, R. E, ed.), Marcel Dekker, New York, pp. 73–138.

    Google Scholar 

  26. Goldstein, L. and Manecke, G. (1976) The chemistry of enzyme immobilisation, in Immobilised Enzyme Principles (Wingard, L. B., Jr., Katchalski-Katzir, E., and Goldstein, L., eds.), Academic, London, pp. 23–126.

    Google Scholar 

  27. Schlegel, H. G. (1993) General Microbiology, 7th ed., Cambridge University Press, Cambridge.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Paterson-Beedle, M., Macaskie, L.E. (2005). Use of PhoN Phosphatase to Remediate Heavy Metals. In: Barredo, JL. (eds) Microbial Processes and Products. Methods in Biotechnology, vol 18. Humana Press. https://doi.org/10.1385/1-59259-847-1:413

Download citation

  • DOI: https://doi.org/10.1385/1-59259-847-1:413

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-548-4

  • Online ISBN: 978-1-59259-847-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics