Skip to main content

Advertisement

Log in

Molecular Genomic Testing for Breast Cancer: Utility for Surgeons

  • Breast Oncology
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Molecular genomic testing provides clinicians with both prognostic and (sometimes) predictive information that can help individualize treatment and decrease the risk of over- or under-treatment. We review the genomic tests that are currently available for clinical use in management of breast cancer, discuss ongoing research related to validating and expanding their utility in different patient populations, and explain why it is important for surgeons to know how to incorporate these tools into their clinical practice in order to individualize patient treatment, reduce unnecessary morbidity, and, accordingly, improve outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Joh JE, Esposito NN, Kiluk JV, et al. The effect of Oncotype DX recurrence score on treatment recommendations for patients with estrogen receptor-positive early stage breast cancer and correlation with estimation of recurrence risk by breast cancer specialists. Oncologist. 2011;16:1520–1526.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Paik S, Shak S, Tang G, et al. Multi-gene RT-PCR assay for predicting recurrence in node negative breast cancer patients–NSABP studies B-20 and B-14. Breast Cancer Res Treat. 2003;82:A16.

    Google Scholar 

  3. Cobleigh MA, Tabesh B, Bitterman P, et al. Tumor gene expression and prognosis in breast cancer patients with 10 or more positive lymph nodes. Clin Cancer Res. 2005;11:8623–8631.

    Article  CAS  PubMed  Google Scholar 

  4. Esteban J, Baker J, Cronin M, et al. Tumor gene expression and prognosis in breast cancer: multi-gene RT-PCR assay of paraffin-embedded tissue. Proc Am Soc Clin Oncol. 2003;22:850.

    Google Scholar 

  5. Paik S, Shak S, Tang G, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351:2817–2826.

    Article  CAS  PubMed  Google Scholar 

  6. Paik S, Tang G, Shak S, et al. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol. 2006;24:3726–3734.

    Article  CAS  PubMed  Google Scholar 

  7. Rakovitch E, Nofech-Mozes S, Hanna W, et al. A population-based validation study of the DCIS Score predicting recurrence risk in individuals treated by breast-conserving surgery alone. Breast Cancer Res Treat. 2015;152:389–398.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Solin LJ, Gray R, Baehner FL, et al. A multigene expression assay to predict local recurrence risk for ductal carcinoma in situ of the breast. J Natl Cancer Inst. 2013;105(10):701–710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sparano JA, Gray RJ, Makower DF, et al. Prospective validation of a 21-gene expression assay in breast cancer. N Engl J Med. 2015;373:2005–2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gluz O, Nitz UA, Christgen M, et al. West German Study Group Phase III PlanB Trial: first prospective outcome data for the 21-gene recurrence score assay and concordance of prognostic markers by central and local pathology assessment. J Clin Oncol. 2016;34(20): 2341–2349.

    Article  PubMed  Google Scholar 

  11. AJCC Cancer Staging Manual. Springer, New York; 2017.

  12. Hayes DF. Targeting adjuvant chemotherapy: a good idea that needs to be proven! J Clin Oncol. 2012;30:1264–1267.

    Article  CAS  PubMed  Google Scholar 

  13. Albain KS, Barlow WE, Shak S, et al. Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal women with node-positive, oestrogen-receptor-positive breast cancer on chemotherapy: a retrospective analysis of a randomised trial. Lancet Oncol. 2010;11:55–65.

    Article  CAS  PubMed  Google Scholar 

  14. Mamounas EP, Bryant J, Lembersky B, et al. Paclitaxel after doxorubicin plus cyclophosphamide as adjuvant chemotherapy for node-positive breast cancer: results from NSABP B-28. J Clin Oncol. 2005;23:3686–3696.

    Article  CAS  PubMed  Google Scholar 

  15. Zanotti L, Bottini A, Rossi C, et al. Diagnostic tests based on gene expression profile in breast cancer: from background to clinical use. Tumor Biol. 2014;35:8461–8470.

    Article  CAS  Google Scholar 

  16. Dabbs DJ, Klein ME, Mohsin SK, et al. High false-negative rate of HER2 quantitative reverse transcription polymerase chain reaction of the Oncotype DX test: an independent quality assurance study. J Clin Oncol. 2011;29:4279–4285.

    Article  PubMed  Google Scholar 

  17. Symmans WF, Wei C, Gould R, et al. Long-term prognostic risk after neoadjuvant chemotherapy associated with residual cancer burden and breast cancer subtype. J Clin Oncol. 2017;35:1049–1060.

    Article  PubMed  Google Scholar 

  18. Yardley DA, Peacock NW, Shastry M, et al. A phase II trial of ixabepilone and cyclophosphamide as neoadjuvant therapy for patients with HER2-negative breast cancer: correlation of pathologic complete response with the 21-gene recurrence score. Breast Cancer Res Treat. 2015;154:299–308.

    Article  CAS  PubMed  Google Scholar 

  19. Bear HD, Wan W, Robidoux A, et al. Using the 21-gene assay from core needle biopsies to choose neoadjuvant therapy for breast cancer: a multicenter trial. J Surg Oncol. 2017;115:917–923.

    Article  CAS  PubMed  Google Scholar 

  20. Shak S, Petkov V, Miller D, et al. Abstract P5-15-01: breast cancer specific survival in 38,568 patients with node negative hormone receptor positive invasive breast cancer and oncotype DX recurrence score results in the SEER database. Cancer Res. 2016;76:P5–P15.

    Article  Google Scholar 

  21. Stemmer S, Steiner M, Rizel S, et al. Abstract P5-08-02: Real-life analysis evaluating 1594 N0/Nmic breast cancer patients for whom treatment decisions incorporated the 21-gene recurrence score result: 5-year KM estimate for breast cancer specific survival with recurrence score results ≤ 30 is > 98%. Cancer Res. 2016;76:P5–08.

    Article  Google Scholar 

  22. Mook S, Veer L, Rutgers EJT, et al. Individualization of therapy using Mammaprint®ì: from development to the MINDACT Trial. Cancer Genom Proteom. 2007;4:147–155.

    CAS  PubMed  Google Scholar 

  23. van de Vijver MJ, He YD, van ‘t Veer LJ, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347:1999–2009.

    Article  PubMed  Google Scholar 

  24. Cardoso F, Piccart-Gebhart M, Van’t Veer L, Rutgers E. The MINDACT trial: The first prospective clinical validation of a genomic tool. Mol Oncol. 2007;1:246–251.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Liu J. Model Selection/Validation. In: Cosmatos D, Chow S-C (eds) Translational medicine: strategies and statistical methods. Boca Raton, FL: Chapman and Hall/CRC, Taylor & Francis Group; 2009.

  26. Cardoso F, van’t Veer LJ, Bogaerts J, et al. 70-Gene signature as an aid to treatment decisions in early-stage breast cancer. N Engl J Med. 2016;375:717–729.

    Article  CAS  PubMed  Google Scholar 

  27. Drukker CA, Bueno-de-Mesquita JM, Retèl VP, et al. A prospective evaluation of a breast cancer prognosis signature in the observational RASTER study. Int J Cancer. 2013;133:929–936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bartlett JM, Thomas J, Ross DT, et al. Mammostrat® as a tool to stratify breast cancer patients at risk of recurrence during endocrine therapy. Breast Cancer Res. 2010;12:1–11.

    Google Scholar 

  29. Nielsen T, Wallden B, Schaper C, et al. Analytical validation of the PAM50-based prosigna breast cancer prognostic gene signature assay and nCounter Analysis System using formalin-fixed paraffin-embedded breast tumor specimens. BMC Cancer. 2014;14:1.

    Article  Google Scholar 

  30. Ma XJ, Salunga R, Dahiya S, et al. A five-gene molecular grade index and HOXB13:IL17BR are complementary prognostic factors in early stage breast cancer. Clin Cancer Res. 2008;14:2601–2608.

    Article  CAS  PubMed  Google Scholar 

  31. Link JS, Buck LJ, Kapoor NS. The breast cancer index as a tool in decision making for adjuvant hormonal therapy in early luminal breast cancer: Initiation, withdrawal and continuance. In: Proceedings of the Thirty-Eighth Annual CTRC-AACR San Antonio Breast Cancer Symposium: 2015 Dec 8–12. Cancer Res. 2016;72: Abstract nr P5-08-10.

  32. Dubsky P, Filipits M, Jakesz R, et al. EndoPredict improves the prognostic classification derived from common clinical guidelines in ER-positive, HER2-negative early breast cancer. Ann Oncol. 2013;24:640–647.

    Article  CAS  PubMed  Google Scholar 

  33. Gyorffy B, Hatzis C, Sanft T, et al. Multigene prognostic tests in breast cancer: past, present, future. Breast Cancer Res. 2015;17:11.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Liedtke C, Hatzis C, Symmans WF, et al. Genomic grade index is associated with response to chemotherapy in patients with breast cancer. J Clin Oncol. 2009;27:3185–3191.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cuzick J, Dowsett M, Pineda S, et al. Prognostic value of a combined estrogen receptor, progesterone receptor, Ki-67, and human epidermal growth factor receptor 2 immunohistochemical score and comparison with the Genomic Health recurrence score in early breast cancer. J Clin Oncol. 2011;29:4273–4278.

    Article  PubMed  Google Scholar 

  36. Bartlett JM, Bayani J, Marshall A, et al. Comparing breast cancer multiparameter tests in the OPTIMA Prelim trial: no test is more equal than the others. J Natl Cancer Inst. 2016;108:djw050.

    Article  Google Scholar 

  37. Haybittle JL, Blamey RW, Elston CW, et al. A prognostic index in primary breast cancer. Br J Cancer. 1982;45:361–366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rakha EA, Soria D, Green AR, et al. Nottingham prognostic index plus (NPI+): a modern clinical decision making tool in breast cancer. Br J Cancer. 2014;110:1688–1697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Green AR, Soria D, Stephen J, et al. Nottingham prognostic index plus: validation of a clinical decision making tool in breast cancer in an independent series. J Pathol Clin Res. 2016;2:32–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sinn P, Aulmann S, Wirtz R, et al. Multigene assays for classification, prognosis, and prediction in breast cancer: a critical review on the background and clinical utility. Geburtshilfe Frauenheilkd. 2013;73:932–940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. D’Alfonso TM, van Laar RK, Vahdat LT, et al. BreastPRS is a gene expression assay that stratifies intermediate-risk Oncotype DX patients into high- or low-risk for disease recurrence. Breast Cancer Res Treat. 2013;139:705–715.

    Article  PubMed  Google Scholar 

  42. Tutt A, Wang A, Rowland C, et al. Risk estimation of distant metastasis in node-negative, estrogen receptor-positive breast cancer patients using an RT-PCR based prognostic expression signature. BMC Cancer. 2008;8:339.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

A version of this manuscript was published in The Breast: Comprehensive Management of Benign and Malignant Diseases. Ed. KI Bland, EM Copeland, VS Klimberg, WJ Gradishar. 5th ed. Philadelphia: Saunders, 2017.

Disclosure

Dr. Lucci-Speaker’s Bureau, Genomic Health, Inc.; Drs. Fayanju and Park-none.

Funding

Dr. Fayanju is supported by the National Center for Advancing Translational Sciences of the National Institutes of Health (NIH) under Award Number 5KL2TR001115 (PI: Boulware) and by the NIH P30 Cancer Center Support Grant P30CA014236 (PI: Kastan) to the Duke Cancer Institute. The content of this manuscript is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Lucci MD, FACS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fayanju, O.M., Park, K.U. & Lucci, A. Molecular Genomic Testing for Breast Cancer: Utility for Surgeons. Ann Surg Oncol 25, 512–519 (2018). https://doi.org/10.1245/s10434-017-6254-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-017-6254-z

Keywords

Navigation