Skip to main content
Log in

Stimulatory Effects of Soluplus® on Flufenamic Acid β-Cyclodextrin Supramolecular Complex: Physicochemical Characterization and Pre-clinical Anti-inflammatory Assessment

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The present study demonstrates the solubility and dissolution of flufenamic acid (FLF)/β-cyclodextrin (β-CD)/Soluplus® supramolecular ternary inclusion complex. The binary and ternary inclusion complexes were prepared using solvent evaporation and the microwave irradiation method. The prepared inclusion complexes were evaluated for physicochemical characterization and anti-inflammatory activity using a murine paw edema mol. The phase solubility studies demonstrated 4.59-fold and 17.54-fold enhancements in FLF solubility with β-CD alone and β-CD:Soluplus® combination compared with pure FLF, respectively. The in vitro drug release results revealed a significant improvement (P < 0.05) in the release pattern compared with pure FLF. Maximum release was found with flufenamic acid binary and ternary complexes prepared using the microwave irradiation method, i.e., 75.23 ± 3.12% and 95.36 ± 3.23% in 60 min, respectively. The physicochemical characterization results showed complex formation and conversion of the crystalline form of FLF to an amorphous form. The SEM study revealed the presence of a more agglomerated and amorphous structure of the solid particles, which confirmed the formation of complexes. The anti-inflammatory effect of the complex was higher than pure FLF. Therefore, the FLF:β-CD:Soluplus® inclusion complex may be a very valuable formulation with improved solubility, dissolution, and anti-inflammatory effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rubio L, Alonso C, Rodríguez G, Cocera M, López-Iglesias C, Coderch L, et al. Bicellar systems as new delivery strategy for topical application of flufenamic acid. Int J Pharm. 2013;444(1–2):60–9.

    CAS  PubMed  Google Scholar 

  2. Alshehri S, Shakeel F, Ibrahim M, Elzayat E, Altamimi M, Shazly G. Influence of the microwave technology on solid dispersions of mefenamic acid and flufenamic acid. PLoS One. 2017;12(7):e0182011.

    PubMed  PubMed Central  Google Scholar 

  3. Baek JS, Yeo EW, Lee YH, Tan NS, Loo SCJ. Controlled-release nanoencapsulating microcapsules to combat inflammatory diseases. Drug Des Dev Ther. 2017;11:1707–17.

    CAS  Google Scholar 

  4. Mohamed AA, Matijevic E. Preparation and characterization of uniform particles of flufenamic acid and its calcium and barium salts. J Colloid Interface Sci. 2012;381(1):198–201.

    CAS  PubMed  Google Scholar 

  5. Badran M. Formulation and in vitro evaluation of flufenamic acid loaded deformable liposomes for improved skin delivery. Digest J Nanomat Biostr. 2014;9(1):83–91.

    Google Scholar 

  6. Abignente E, DeCaprariis P. Flufenamic acid: analytical profiles of drug substances, New York: Academic Press, Inc., 313–346 (1982).

  7. Alshehri S, Shakeel F. Solubility measurement, thermodynamics and molecular interactions of flufenamic acid in different neat solvents. J Mol Liq. 2017;240:447–53.

    CAS  Google Scholar 

  8. Abignente E, Caprariis P. Flufenamic Acid. Analytical Profiles of Drug Substances11, 1982, PP- 313-346.

  9. Aronson JK. Meyler’s side effects of analgesics and anti-inflammatory drugs. Elsevier, 2009 ISBN 9780080932941.

  10. Ibolya F, Gyeresi A, Szabo-Revesz P, Aigner Z. Solid dispersion of flufenamic acid with PEG 4000 and PEG 6000. Farmacia. 2011;1(59):60–9.

    Google Scholar 

  11. Itai S, Nemoto M, Kouchiwa S, Murayama H, Nagai T. Influence of wetting factors on the dissolution behavior of flufenamic acid. Chem Pharm Bull. 1985;33:5464–73.

    CAS  PubMed  Google Scholar 

  12. Nechipadappu SK, Tekuri V, Trivedi DR. Pharmaceutical co-crystal of flufenamic acid: synthesis and characterization of two novel drug-drug co-crystal. J Pharm Sci. 2017;106:1384–90.

    CAS  PubMed  Google Scholar 

  13. Belhocine Y, Bouhadiba A, Rahim M, Nouar L, Djilani I, Khatmic DE. Inclusion complex formation of β-Cyclodextrin with the nonsteroidal anti-inflammatory drug flufenamic acid: computational study. Macroheterocycles. 2018;11(2):203–9.

    CAS  Google Scholar 

  14. Soares-Sobrinho JL. Soares MFdLR, Rolim-Neto PJ, Torres-Labandeira J. Physicochemical study of solid-state benznidazole–cyclodextrin complexes. J Thermal Anal Cal. 2011;106(2):319–25.

    CAS  Google Scholar 

  15. Brewster ME, Loftsson T. Cyclodextrins as pharmaceutical solubilizers. Adv Drug Deliv Rev. 2007;59(7):645–66.

    CAS  PubMed  Google Scholar 

  16. Moura LCS, Batista DRMR, Honorato SB, Ayala AP, Morais WA, Barbosa EG, et al. Effect of hydroxypropyl methylcellulose on beta cyclodextrin complexation of praziquantel in solution and in solid state. J Incl Phenom Macrocycl Chem. 2016;85:151–60.

    Google Scholar 

  17. Mennini N, Maestrelli F, Cirri M, Mura P. Analysis of physicochemical properties of ternary systems of oxaprozin with randomly methylated-ß-cyclodextrin and L-arginine aimed to improve the drug solubility. J Pharm Biomed Anal. 2016;129:350–8.

    CAS  PubMed  Google Scholar 

  18. Srivalli KMR, Mishra B. Improved aqueous solubility and antihypercholesterolemic activity of ezetimibe on formulating with Hydroxypropyl-β-cyclodextrin and hydrophilic auxiliary substances. AAPS Pharm Sci Tech. 2016;17(2):272–83.

    CAS  Google Scholar 

  19. Alvarez-Rivera F, Fernandez-Villanueva D, Concheiro A, &Alavez-Lorenzo, C. α-Lipoic acid in Soluplus® polymeric nanomicelles for ocular treatment of diabetes associated cornear diseases. J Pharm Sci. 2016;105:2855–63.

  20. Taveira SF, Varela-Garcia A, Souza BS, Marreto RN, Pastor MM, Concheiro A, et al. Cyclodextrin-based poly(pseudo)rotaxanes for transdermal delivery of Carvedilol. Carbohyd Polymers. 2018;200:278–88.

    CAS  Google Scholar 

  21. Julia F. Alopaeus, Ellen Hagesaeher, IngunnTho. Micellisation mechanism and behaviour of Soluplus®–furosemide micelles: preformulation studies of an oral nanocarrier-based system. Pharmaceuticals. 2019;12(1):15.

    Google Scholar 

  22. Taupitz T, Dressman JB, Buchanan CM, Klein S. Cyclodextrin-water soluble polymer ternary complexes enhance the solubility and dissolution behaviour of poorly soluble drugs. Case example: itraconazole. Eur J Pharm Biopharm. 2013;83(3):378–87.

    CAS  PubMed  Google Scholar 

  23. França MT, Pereira RN, Riekes MK, Pinto JMO, Stulzer HK. Investigation of novel supersaturating drug delivery systems of chlorthalidone: the use of polymer-surfactant complex as an effective carrier in solid dispersions. Eur J Pharm Sci. 2018;111:142–52.

    PubMed  Google Scholar 

  24. Tao C, Huo T, Zhang Q, Song H. Effect of Soluplus® on the supersaturation and absorption of tacrolimus formulated as inclusion complex with dimethyl-β-cyclodextrin. Pharm Dev Technol. 2019;24(9):1076–82.

    CAS  PubMed  Google Scholar 

  25. Thiry J, Krier F, Ratwatte S, Thomassin JM, Jerome C, Evrard B. Hot-melt extrusion as a continuous manufacturing process to form ternary cyclodextrin inclusion complexes. Eur J Pharm Sci. 2017;96:590–7.

    CAS  PubMed  Google Scholar 

  26. Lorenzo-Veiga B, Sigurdsson HH, Loftsson T, Alvarez-Lorenzo C. Cyclodextrin–amphiphilic copolymer supramolecular assemblies for the ocular delivery of natamycin. Nanomaterials. 2019;9:745–63.

    CAS  PubMed Central  Google Scholar 

  27. Marcos X, Perez-Casas S, Llovo J, Concheiro A, Alvarez-Lorenzo C. Poloxamer-hydroxyethyl cellulose-alpha-cyclodextrin supramolecular gels for sustained release of griseofulvin. Int J Pharm. 2016;500:11–9.

    CAS  PubMed  Google Scholar 

  28. Medarević D, Kachrimanis K, Djuric Z, Ibric S. Influence of hydrophilic polymers on the complexation of carbamazepine with hydroxypropyl-β-cyclodextrin. Eur J Pharm Sci. 2015;78:273–85.

    PubMed  Google Scholar 

  29. Lim SM, Pang ZW, Tan HY, Shaikh M, Adinarayana G, Garg S. Enhancement of docetaxel solubility using binary and ternary solid dispersion systems. Drug Dev Ind Pharm. 2015;41(11):1847–55.

    CAS  PubMed  Google Scholar 

  30. Higuchi T, Connors KA. Phase solubility techniques. Adv Anal Chem Instrum. 1965;4:117–212.

    CAS  Google Scholar 

  31. Patel M, Hirlekar R. Multicomponent cyclodextrin system for improvement of solubility and dissolution rate of poorly water soluble drug. Asian J Pharm Sci. 2019;14(1):104–15.

    PubMed  Google Scholar 

  32. Wen X, Tan F, Jing Z, Iiu Z. Preparation and study of the 1:2 inclusion complex of carvedilol with β - cyclodextrin. J Pharm Biomed Anal. 2004;34:517–23.

    CAS  PubMed  Google Scholar 

  33. Moneghini M, Zingone G, Zordi ND. Influence of microwave technology on the physical-chemical properties of solid dispersion with nimesulide. Powder Technol. 2009;195:259–63.

    CAS  Google Scholar 

  34. Suvarna V, Thorat S, Nayak U, Sherje A, Murahari M. Host-guest interaction study of Efavirenz with hydroxypropyl-β-cyclodextrin and L-arginine by computational simulation studies: preparation and characterization of supramolecular complexes. J Mol Liq. 2018;259:55–64.

    CAS  Google Scholar 

  35. Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13(2):123–33.

    CAS  PubMed  Google Scholar 

  36. Alshehri S, Imam SS, Altamimi MA, Jafar M, Hassan MZ, Hussain A, et al. Host-guest complex of β-cyclodextrin and pluronic F127 with Luteolin: physicochemical characterization, anti-oxidant activity and molecular modeling studies. J Drug Del Sci Tech. 2020;55:101356.

    CAS  Google Scholar 

  37. Thiry J, Kok MGM, Collard L, Frere A, Krier F, Fillet M, et al. Bioavailability enhancement of itraconazole-based solid dispersions produced by hot melt extrusion in the framework of the Three Rs rule. Eur J Pharm Sci. 2017;99:1–8.

    CAS  PubMed  Google Scholar 

  38. Wada Y, Etoh Y, Ohira A, Kimata H, Koide T, Ishihama H, et al. Percutaneous absorbtion and anti-inflammatory activity of indomethacin in ointment. J Pharm Pharmcol. 1982;34:467–8.

    CAS  Google Scholar 

  39. Escribano E, Calpena AC, Queralt J, Obach R, Doménech J. Assessment of diclofenac permeation with different formulations: anti-inflammatory study of a selected formula. Eur J Pharm Sci. 2003;19:203–10.

    CAS  PubMed  Google Scholar 

  40. Manca ML, Zaru M, Ennas G, Valenti D, Sinico C, Loy G, et al. Diclofenac-β-cyclodextrin binary systems: physicochemical characterization and in vitro dissolution and diffusion studies. AAPS Pharm Sci Tech. 2005;6(3):E464–72.

    Google Scholar 

  41. Bera H, Chekuri S, Sarkar S, Kumar S, Muvva NB, Mothe S, et al. Novel pimozide-β-cyclodextrin-polyvinyl pyrrolidone inclusion complexes for Tourette syndrome treatment. J Mol Liq. 2016;215:135–43.

    CAS  Google Scholar 

  42. Flufenamic acid. Drugbank. Available at: http://www.drugbank.ca/drugs/ DB02266. Accessed January 1, 2020.

  43. Sherje AP, Kulkarni V, Murahari M, Nayak UY, Bhat P, Suvarna V, et al. Inclusion complexation of etodolac with hydroxypropyl-beta-cyclodextrin and auxiliary agents: formulation characterization and molecular modeling studies. Mol Pharm. 2017;14(4):1231–42.

    CAS  PubMed  Google Scholar 

  44. Bajerski L, Rossi RC, Dias CL, Bergold AM, Froehlich PE. Development and validation of a discriminating in vitrodissolutionmethod for a poorly soluble drug, Olmesartanmedoxomil: comparison between commercial tablets. AAPS Pharm Sci Tech. 2010;11(2):637–44.

    CAS  Google Scholar 

  45. Ma B, Shen Y, Fan Z, Zheng Y, Sun H, Luo J, et al. Characterization of the inclusion complex of 16, 17α-epoxy progesterone with randomly methylated β-cyclodextrin in aqueous solution and in the solid state. J Incl Phenom Macrocycl Chem. 2011;69:273–80.

    CAS  Google Scholar 

  46. Zawar LR, Bari SB. Preparation, characterization and in vivo evaluation of antihyperglycemic activity of microwave generated repaglinide solid dispersion. Chem Pharm Bull. 2012;60(4):482–7.

    CAS  PubMed  Google Scholar 

  47. Jansook P, Kulsirachote P, Loftsson T. Cyclodextrin solubilization of celecoxib: solid and solution state characterization. J Inclusion Phenom Mac Chem. 2018;90:75–88.

    CAS  Google Scholar 

  48. Ganza-González A, Vila-Jato JL, Anguiano-Igea S, Otero-Espinar FJ, Blanco-Méndez J. A proton nuclear magnetic resonance study of the inclusion complex of naproxen with β-cyclodextrin. Int J Pharm. 1994;106(3):179–85.

    Google Scholar 

  49. Alshehri S, Shakeel F, Elzayat E, Almeanazel O, Altamimi M, Shazly G, et al. Rat palatability, pharmacodynamics effect and bioavailability mefenamic acid formulations utilizing hot-melt extrusion technology. Drug Dev Ind Pharm. 2019;45:1610–6.

    CAS  PubMed  Google Scholar 

Download references

Funding

Authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for funding this research via research group number RG-1441-460.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sultan Alshehri.

Ethics declarations

The protocol for these studies was reviewed and approved by the “Animal Ethics Committee of King Saud University, Riyadh, Saudi Arabia (approval number KSU-SE-19-19).”

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

Supplementary Figure S1a-b: Nuclear magnetic resonance spectra (1H) of β-CD and Soluplus. Supplementary Figure S2a-b: Nuclear magnetic resonance spectra (13C) of β-CD and Soluplus. (DOCX 105 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alshehri, S., Imam, S.S., Altamimi, M.A. et al. Stimulatory Effects of Soluplus® on Flufenamic Acid β-Cyclodextrin Supramolecular Complex: Physicochemical Characterization and Pre-clinical Anti-inflammatory Assessment. AAPS PharmSciTech 21, 145 (2020). https://doi.org/10.1208/s12249-020-01684-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-01684-2

KEY WORDS

Navigation