Skip to main content
Log in

Bile salts: unlocking the potential as bio-surfactant for enhanced drug absorption

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In the pursuit of developing new active ingredients for drug development, bile salts have emerged as promising substances that can enhance absorption. Their unique properties, characterized by being both hydrophilic and hydrophobic, provide numerous opportunities for modifying drugs across different categories. As naturally occurring surfactants within the body, bile salts have been extensively utilized to improve the absorption of drugs through various biological barriers, including the blood–brain barrier, skin, mucosa, cornea, buccal (oral cavity), nasal, pulmonary (lung), and intestinal membranes. By leveraging bile salts, researchers have discovered their significant potential in increasing drug permeability and bioavailability by facilitating transport through these barriers. Additionally, bile salts can be effectively combined with other commonly used materials in drug delivery, such as lipids and polymers, expanding their application as active ingredients. This comprehensive review aims to present the latest insights in this field by examining recent literature on the subject.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Debility S et al Jalinoos [Claudius Galen]–Galen of Pergamon

  2. Macierzanka A, Torcello-Gómez A, Jungnickel C, Maldonado-Valderrama J (2019) Bile salts in digestion and transport of lipids. Adv Coll Interface Sci 274:102045

    Article  CAS  Google Scholar 

  3. Sankhyan A, Pawar PK (2013) Metformin loaded non-ionic surfactant vesicles: optimization of formulation, effect of process variables and characterization. DARU J Pharm Sci 21:1–8

    Article  Google Scholar 

  4. Kundu S, Kumar S, Bajaj A (2015) Cross-talk between bile acids and gastrointestinal tract for progression and development of cancer and its therapeutic implications. IUBMB Life 67(7):514–523

    Article  CAS  PubMed  Google Scholar 

  5. Ahmed M (2022) Functional, diagnostic and therapeutic aspects of bile. Clin Exp Gastroenterol 105–120

  6. Russell DW (2003) The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem 72(1):137–174

    Article  CAS  PubMed  Google Scholar 

  7. Fini A, Feroci G, Roda A (2002) Acidity in bile acid systems. Polyhedron 21(14–15):1421–1427

    Article  CAS  Google Scholar 

  8. Chang C-M, Bodmeier R (1997) Effect of dissolution media and additives on the drug release from cubic phase delivery systems. J Control Release 46(3):215–222

    Article  CAS  Google Scholar 

  9. Moghimipour E, Ameri A, Handali S (2015) Absorption-enhancing effects of bile salts. Molecules 20(8):14451–14473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Quinn M et al (2014) Bile acids permeabilize the blood brain barrier after bile duct ligation in rats via Rac1-dependent mechanisms. Dig Liver Dis 46(6):527–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stojančević M, Pavlović N, Goločorbin-Kon S, Mikov M (2013) Application of bile acids in drug formulation and delivery. Front Life Sci 7(3–4):112–122

    Article  Google Scholar 

  12. Arora G et al (2011) Formulation and evaluation of controlled release matrix mucoadhesive tablets of domperidone using Salvia plebeian gum. J Adv Pharm Technol Res 2(3):163–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pavlović N et al (2018) Bile acids and their derivatives as potential modifiers of drug release and pharmacokinetic profiles. Front Pharmacol 9:1283

    Article  PubMed  PubMed Central  Google Scholar 

  14. Shaikh M, Derle ND, Bhamber R (2012) Permeability enhancement techniques for poorly permeable drugs: a review. J Appl Pharm Sci 2(7):34–39

    Google Scholar 

  15. Aburahma MH (2016) Bile salts-containing vesicles: promising pharmaceutical carriers for oral delivery of poorly water-soluble drugs and peptide/protein-based therapeutics or vaccines. Drug Deliv 23(6):1847–1867

    CAS  PubMed  Google Scholar 

  16. Thakur G, Singh A, Singh I (2016) Chitosan-montmorillonite polymer composites: formulation and evaluation of sustained release tablets of aceclofenac. Sci Pharm 84(4):603–618

    Article  CAS  Google Scholar 

  17. Small DM (1968) Size and structure of bile salt micelles: influence of structure, concentration, counterion concentration, pH, and temperature, ACS Publications

  18. Poša M, Pilipović A (2017) Self-association of C3 and C6 epimers of hyodeoxycholate anions in aqueous medium: hydrophobicity, critical micelle concentration and aggregation number. J Mol Liq 238:48–57

    Article  Google Scholar 

  19. Naso JN, Bellesi FA, Ruiz-Henestrosa VMP, Pilosof AM (2019) Studies on the interactions between bile salts and food emulsifiers under in vitro duodenal digestion conditions to evaluate their bile salt binding potential. Colloids Surf, B 174:493–500

    Article  CAS  Google Scholar 

  20. Swaan PW, Szoka FC Jr, Øie S (1996) Use of the intestinal and hepatic bile acid transporters for drug delivery. Adv Drug Deliv Rev 20(1):59–82

    Article  CAS  Google Scholar 

  21. Azum N, Rub MA, Asiri AM (2019) Bile salt–bile salt interaction in mixed monolayer and mixed micelle formation. J Chem Thermodyn 128:406–414

    Article  CAS  Google Scholar 

  22. Malik NA (2016) Solubilization and interaction studies of bile salts with surfactants and drugs: a review. Appl Biochem Biotechnol 179:179–201

    Article  CAS  PubMed  Google Scholar 

  23. Gibaldi M, Feldman S (1970) Mechanisms of surfactant effects on drug absorption. J Pharm Sci 59(5):579–589

    Article  CAS  PubMed  Google Scholar 

  24. Hofmann A, Small DM (1967) Detergent properties of bile salts: correlation with physiological function. Annu Rev Med 18(1):333–376

    Article  CAS  PubMed  Google Scholar 

  25. Coreta-Gomes FM et al (2012) Quantification of cholesterol solubilized in bile salt micellar aqueous solutions using 13C nuclear magnetic resonance. Anal Biochem 427(1):41–48

    Article  CAS  PubMed  Google Scholar 

  26. Mrestani Y, Bretschneider B, Härtl A, Neubert RH (2003) In-vitro and in-vivo studies of cefpirom using bile salts as absorption enhancers. J Pharm Pharmacol 55(12):1601–1606

    Article  CAS  PubMed  Google Scholar 

  27. Mudgil M et al (2012) Nanotechnology: a new approach for ocular drug delivery system. Int J Pharm Pharm Sci 4(2):105–12

  28. Reis S et al (2004) Noninvasive methods to determine the critical micelle concentration of some bile acid salts. Anal Biochem 334(1):117–126

    Article  CAS  PubMed  Google Scholar 

  29. Roda A, Hofmann AF, Mysels KJ (1983) The influence of bile salt structure on self-association in aqueous solutions. J Biol Chem 258(10):6362–6370

    Article  CAS  PubMed  Google Scholar 

  30. Mooranian A et al (2020) Bile acid bio-nanoencapsulation improved drug targeted-delivery and pharmacological effects via cellular flux: 6-months diabetes preclinical study. Sci Rep 10(1):106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ahmad J et al (2017) Bile salt stabilized vesicles (bilosomes): a novel nano-pharmaceutical design for oral delivery of proteins and peptides. Curr Pharm Des 23(11):1575–1588

    Article  CAS  PubMed  Google Scholar 

  32. Holm R, Müllertz A, Mu H (2013) Bile salts and their importance for drug absorption. Int J Pharm 453(1):44–55

    Article  CAS  PubMed  Google Scholar 

  33. Parekh PY, Patel VI, Khimani MR and Bahadur P (2023) Self-assembly of bile salts and their mixed aggregates as building blocks for smart aggregates. Adv Colloid Interface Sci 102846

  34. Albalak A et al (1996) Effects of submicellar bile salt concentrations on biological membrane permeability to low molecular weight non-ionic solutes. Biochemistry 35(24):7936–7945

    Article  CAS  PubMed  Google Scholar 

  35. Attili A et al (1986) Bile acid-induced liver toxicity: relation to the hydrophobic-hydrophilic balance of bile acids. Med Hypotheses 19(1):57–69

    Article  CAS  PubMed  Google Scholar 

  36. Van Hasselt P et al (2009) The influence of bile acids on the oral bioavailability of vitamin K encapsulated in polymeric micelles. J Control Release 133(2):161–168

    Article  PubMed  Google Scholar 

  37. Van Hasselt P (2009). Vitamin K prophylaxis revisited: focus on risk factors, University Utrecht

  38. Kabedev A et al (2021) Molecular dynamics simulations reveal membrane interactions for poorly water-soluble drugs: impact of bile solubilization and drug aggregation. J Pharm Sci 110(1):176–185

    Article  CAS  PubMed  Google Scholar 

  39. Alrefai WA, Gill RK (2007) Bile acid transporters: structure, function, regulation and pathophysiological implications. Pharm Res 24:1803–1823

    Article  CAS  PubMed  Google Scholar 

  40. Deng F, Bae YH (2020) Bile acid transporter-mediated oral drug delivery. J Control Release 327:100–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bashyal S, Seo J-E, Choi YW, Lee S (2021) Bile acid transporter-mediated oral absorption of insulin via hydrophobic ion-pairing approach. J Control Release 338:644–661

    Article  CAS  PubMed  Google Scholar 

  42. Kweon S et al (2023) Design of chimeric GLP-1A using oligomeric bile acids to utilize transporter-mediated endocytosis for oral delivery. Biomater Res 27(1):1–18

    Article  Google Scholar 

  43. Murakami T, Bodor E, Bodor N (2021) Factors and dosage formulations affecting the solubility and bioavailability of P-glycoprotein substrate drugs. Expert Opin Drug Metab Toxicol 17(5):555–580

    Article  CAS  PubMed  Google Scholar 

  44. Zhang B et al (2016) Bile salt liposomes for enhanced lymphatic transport and oral bioavailability of paclitaxel. Die Pharmazie-An Int J Pharma Sci 71(6):320–326

    CAS  Google Scholar 

  45. Rupp C, Steckel H, Müller BW (2010) Mixed micelle formation with phosphatidylcholines: the influence of surfactants with different molecule structures. Int J Pharm 387(1–2):120–128

    Article  CAS  PubMed  Google Scholar 

  46. Guo Q et al (2016) Comparison of bile salt/phosphatidylcholine mixed micelles in solubilization to sterols and stability. Drug Des, Dev Therapy 3789–3798

  47. Yu X et al (2015) Ginsenoside Rg3 bile salt-phosphatidylcholine-based mixed micelles: design, characterization, and evaluation. Chem Pharm Bull 63(5):361–368

    Article  CAS  Google Scholar 

  48. Hammad MA, Müller BW (1999) Solubility and stability of lorazepam in bile salt/soya phosphatidylcholine–mixed micelles. Drug Dev Ind Pharm 25(4):409–417

    Article  CAS  PubMed  Google Scholar 

  49. Cautela J et al (2017) Wormlike reverse micelles in lecithin/bile salt/water mixtures in oil. Colloids Surf, A 532:411–419

    Article  CAS  Google Scholar 

  50. Fornasier M et al (2021) Tuning lipid structure by bile salts: hexosomes for topical administration of catechin. Colloids Surf, B 199:111564

    Article  CAS  Google Scholar 

  51. Dening TJ, Douglas JT, Hageman MJ (2021) Do macrocyclic peptide drugs interact with bile salts under simulated gastrointestinal conditions? Mol Pharm 18(8):3086–3098

    Article  CAS  PubMed  Google Scholar 

  52. Matheson AB et al (2017) The development of phytosterol-lecithin mixed micelles and organogels. Food Funct 8(12):4547–4554

    Article  CAS  PubMed  Google Scholar 

  53. Jain S, Reddy CSK, Swami R, Kushwah V (2018) Amphotericin B loaded chitosan nanoparticles: implication of bile salt stabilization on gastrointestinal stability, permeability and oral bioavailability. AAPS PharmSciTech 19:3152–3164

    Article  CAS  PubMed  Google Scholar 

  54. Liu X, Clifford A, Zhao Q, Zhitomirsky I (2020) Biomimetic strategies in colloidal-electrochemical deposition of functional materials and composites using chenodeoxycholic acid. Colloids Surf, A 603:125189

    Article  CAS  Google Scholar 

  55. Mathavan S, Chen-Tan N, Arfuso F, Al-Salami H (2016) The role of the bile acid chenodeoxycholic acid in the targeted oral delivery of the anti-diabetic drug gliclazide, and its applications in type 1 diabetes. Artif Cells Nanomedicine Biotechnol 44(6):1508–1519

    Article  CAS  Google Scholar 

  56. Mooranian A et al (2021) Chenodeoxycholic acid pharmacology in biotechnology and transplantable pharmaceutical applications for tissue delivery: an acute preclinical study. Cells 10(9):2437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Qian M et al (2022) Discovery of novel cholic acid derivatives as highly potent agonists for G protein-coupled bile acid receptor. Bioorg Chem 120:105588

    Article  CAS  PubMed  Google Scholar 

  58. Salminen S et al (1998) Functional food science and gastrointestinal physiology and function. Br J Nutr 80(S1):S147–S171

    Article  CAS  PubMed  Google Scholar 

  59. Chan OH, Stewart BH (1996) Physicochemical and drug-delivery considerations for oral drug bioavailability. Drug Discov Today 1(11):461–473

    Article  CAS  Google Scholar 

  60. Jeon OC et al (2013) Oral delivery of ionic complex of ceftriaxone with bile acid derivative in non-human primates. Pharm Res 30(4):959–967

    Article  CAS  PubMed  Google Scholar 

  61. Lillienau J, Schteingart CD, Hofmann AF (1992) Physicochemical and physiological properties of cholylsarcosine. A potential replacement detergent for bile acid deficiency states in the small intestine. J Clin Invest 89(2):420–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Michael S et al (2000) Improvement of intestinal peptide absorption by a synthetic bile acid derivative, cholylsarcosine. Eur J Pharm Sci 10(2):133–140

    Article  CAS  PubMed  Google Scholar 

  63. Yang L, Zhang H, Mikov M, Tucker IG (2009) Physicochemical and biological characterization of monoketocholic acid, a novel permeability enhancer. Mol Pharm 6(2):448–456

    Article  CAS  PubMed  Google Scholar 

  64. Chen G et al (2012) Effect of ketocholate derivatives on methotrexate uptake in Caco-2 cell monolayers. Int J Pharm 433(1–2):89–93

    Article  CAS  PubMed  Google Scholar 

  65. Chen G, Fawcett JP, Mikov M, Tucker IG (2009) Monoketocholate can decrease transcellular permeation of methotrexate across Caco-2 cell monolayers and reduce its intestinal absorption in rat. J Pharm Pharmacol 61(7):953–959

    Article  CAS  PubMed  Google Scholar 

  66. Leuenberger M et al (2021) Characterization of novel fluorescent bile salt derivatives for studying human bile salt and organic anion transporters. J Pharmacol Exp Ther 377(3):346–357

    Article  CAS  PubMed  Google Scholar 

  67. Schneider S et al (1991) Fluorescent derivatives of bile salts. I. Synthesis and properties of NBD-amino derivatives of bile salts. J Lipid Res 32(11):1755–1767

    Article  CAS  PubMed  Google Scholar 

  68. Schramm U et al (1991) Fluorescent derivatives of bile salts. II. Suitability of NBD-amino derivatives of bile salts for the study of biological transport. J Lipid Res 32(11):1769–1779

    Article  CAS  PubMed  Google Scholar 

  69. Lalić-Popović M et al (2013) Deoxycholic acid as a modifier of the permeation of gliclazide through the blood brain barrier of a rat. J Diabetes Res

  70. Greenwood J et al (1991) The effect of bile salts on the permeability and ultrastructure of the perfused, energy-depleted, rat blood-brain barrier. J Cereb Blood Flow Metab 11(4):644–654

    Article  CAS  PubMed  Google Scholar 

  71. Watanabe A, Fujiwara M, Tominaga S, Nagashima H (1987) Bile acid and ammonia-induced brain edema in rats. Hiroshima J Med Sci 36(2):257–259

    CAS  PubMed  Google Scholar 

  72. Jain S et al (2019) Mechanistic insights into high permeation vesicle-mediated synergistic enhancement of transdermal drug permeation. Nanomedicine 14(16):2227–2241

    Article  CAS  PubMed  Google Scholar 

  73. Khafagy E-S, Almutairy BK, Abu Lila AS (2023) Tailoring of novel bile salt stabilized vesicles for enhanced transdermal delivery of simvastatin: a new therapeutic approach against inflammation. Polymers 15(3):677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lohan S et al (2021) QbD-steered development of mixed nanomicelles of galantamine: Demonstration of enhanced brain uptake, prolonged systemic retention and improved biopharmaceutical attributes. Int J Pharm 600:120482

    Article  CAS  PubMed  Google Scholar 

  75. Fetih G, Ibrahim M, Amin M (2011) Design and characterization of transdermal films containing ketorolac tromethamine. Int J PharmTech Res 3(1):449–458

    CAS  Google Scholar 

  76. Alvarez-Figueroa MJ, Muggli-Galaz C, González PM (2019) Effect of the aggregation state of bile salts on their transdermal absorption enhancing properties. J Drug Deliv Sci Technol 54:101333

    Article  CAS  Google Scholar 

  77. Salem HF et al (2022) Evaluation of metformin hydrochloride tailoring bilosomes as an effective transdermal nanocarrier. Int J Nanomedicine 1185–1201

  78. Ahmed S, Kassem MA and Sayed S (2020) Bilosomes as promising nanovesicular carriers for improved transdermal delivery: construction, in vitro optimization, ex vivo permeation and in vivo evaluation. Int J Nanomedicine 9783–9798

  79. Sasaki H et al (1995) Ocular permeability of FITC-dextran with absorption promoter for ocular delivery of peptide drug. J Drug Target 3(2):129–135

    Article  CAS  PubMed  Google Scholar 

  80. Hayakawa E et al (1992) Conjunctival penetration of insulin and peptide drugs in the albino rabbit. Pharm Res 9(6):769–775

    Article  CAS  PubMed  Google Scholar 

  81. Dai Y et al (2013) Liposomes containing bile salts as novel ocular delivery systems for tacrolimus (FK506): in vitro characterization and improved corneal permeation. Int J Nanomedicine 8:1921–1933

    PubMed  PubMed Central  Google Scholar 

  82. Dalpiaz A et al (2019) Bile salt-coating modulates the macrophage uptake of nanocores constituted by a zidovudine prodrug and enhances its nose-to-brain delivery. Eur J Pharm Biopharm 144:91–100

    Article  CAS  PubMed  Google Scholar 

  83. Johansson F et al (2002) Mechanisms for absorption enhancement of inhaled insulin by sodium taurocholate. Eur J Pharm Sci 17(1–2):63–71

    Article  CAS  PubMed  Google Scholar 

  84. Miyake M et al (2021) Spermine with sodium taurocholate enhances pulmonary absorption of macromolecules in rats. J Pharm Sci 110(10):3464–3470

    Article  CAS  PubMed  Google Scholar 

  85. Natalini PM et al (2019) The influence of surfactant on the properties of albendazole-bile salts particles designed for lung delivery. J Drug Deliv Sci Technol 53:101162

    Article  CAS  Google Scholar 

  86. Pilcer G, Amighi K (2010) Formulation strategy and use of excipients in pulmonary drug delivery. Int J Pharm 392(1–2):1–19

    Article  CAS  PubMed  Google Scholar 

  87. Sørli JB et al (2018) Bile salt enhancers for inhalation: correlation between in vitro and in vivo lung effects. Int J Pharm 550(1–2):114–122

    Article  PubMed  Google Scholar 

  88. Yamamoto A et al (1992) A mechanistic study on enhancement of rectal permeability to insulin in the albino rabbit. J Pharmacol Exp Ther 263(1):25–31

    CAS  PubMed  Google Scholar 

  89. Dolai J, Mandal K, Jana NR (2021) Nanoparticle size effects in biomedical applications. ACS Appl Nano Mater 4(7):6471–6496

    Article  CAS  Google Scholar 

  90. Heiligtag FJ, Niederberger M (2013) The fascinating world of nanoparticle research. Mater Today 16(7–8):262–271

    Article  CAS  Google Scholar 

  91. Khan I, Saeed K, Khan I (2019) Nanoparticles: properties, applications and toxicities. Arab J Chem 12(7):908–931

    Article  CAS  Google Scholar 

  92. Miyajima K, Yokoi M, Komatsu H, Nakagaki M (1986) Interaction of β-cyclodextrin with bile salts in aqueous solutions. Chem Pharm Bull 34(3):1395–1398

    Article  CAS  Google Scholar 

  93. Olesen NE, Westh P, Holm R (2016) Displacement of drugs from cyclodextrin complexes by bile salts: a suggestion of an intestinal drug-solubilizing capacity from an in vitro model. J Pharm Sci 105(9):2640–2647

    Article  CAS  PubMed  Google Scholar 

  94. Camilleri M (2022) Bile acid detergency:permeability, inflammation, and effects of sulfation. Am J Physiol-Gastrointest Liver Physiol 322(5):480–488

    Article  Google Scholar 

  95. Zhao D, Hirst BH (1990) Bile salt-induced increases in duodenal brush-border membrane proton permeability, fluidity, and fragility. Dig Dis Sci 35:589–595

    Article  CAS  PubMed  Google Scholar 

  96. Wu S et al (2019) A delivery system for oral administration of proteins/peptides through bile acid transport channels. J Pharm Sci 108(6):2143–2152

    Article  CAS  PubMed  Google Scholar 

  97. Yang G et al (2019) Formulation design, characterization, and in vitro and in vivo evaluation of nanostructured lipid carriers containing a bile salt for oral delivery of gypenosides. Int J Nanomedicine 14:2267–2280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kim KS, Suzuki K, Cho H, Bae YH (2020) Selected factors affecting oral bioavailability of nanoparticles surface-conjugated with glycocholic acid via intestinal lymphatic pathway. Mol Pharm 17(11):4346–4353

    Article  CAS  PubMed  Google Scholar 

  99. Singh I, Swami R, Khan W, Sistla R (2014) Lymphatic system: a prospective area for advanced targeting of particulate drug carriers. Expert Opin Drug Deliv 11(2):211–229

    Article  CAS  PubMed  Google Scholar 

  100. Mutlu-Agardan NB, Han S (2021) In vitro and in vivo evaluations on nanoparticle and phospholipid hybrid nanoparticles with absorption enhancers for oral insulin delivery. Pharm Dev Technol 26(2):157–166

    Article  CAS  PubMed  Google Scholar 

  101. Bao X et al (2023) Intestinal epithelium penetration of liraglutide via cholic acid pre-complexation and zein/rhamnolipids nanocomposite delivery. J Nanobiotechnology 21(1):16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bao X, Qian K, Yao P (2021) Insulin-and cholic acid-loaded zein/casein–dextran nanoparticles enhance the oral absorption and hypoglycemic effect of insulin. J Mater Chem B 9(31):6234–6245

    Article  CAS  PubMed  Google Scholar 

  103. Jeong JH et al (2019) Protective effect of cholic acid-coated poly lactic-co-glycolic acid (PLGA) nanoparticles loaded with erythropoietin on experimental stroke. J Nanosci Nanotechnol 19(10):6524–6533

    Article  CAS  PubMed  Google Scholar 

  104. Lu X et al (2021) Redox-responsive prodrug for improving oral bioavailability of paclitaxel through bile acid transporter-mediated pathway. Int J Pharm 600:120496

    Article  CAS  PubMed  Google Scholar 

  105. Wang L et al (2022) Enhanced oral absorption and liver distribution of polymeric nanoparticles through traveling the enterohepatic circulation pathways of bile acid. ACS Appl Mater Interfaces 14(37):41712–41725

    Article  CAS  PubMed  Google Scholar 

  106. Yan C et al (2019) 5β-cholanic acid/glycol chitosan self-assembled nanoparticles (5β-CHA/GC-NPs) for enhancing the absorption of FDs and insulin by rat intestinal membranes. AAPS PharmSciTech 20:1–8

    Article  Google Scholar 

  107. Yang S et al (2023) TPGS and Doca dual-modified mesoporous silica nanoparticle-supported lipid bilayers enhance the efficient delivery and in vivo absorption of Coenzyme Q10. J Drug Deliv Sci Technol 81:104243

    Article  CAS  Google Scholar 

  108. Deng F, Bae YH (2022) Lipid raft-mediated and upregulated coordination pathways assist transport of glycocholic acid-modified nanoparticle in a human breast cancer cell line of SK-BR-3. Int J Pharm 617:121589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Cunningham AJ, Zhu X (2016) Polymers made of bile acids: from soft to hard biomaterials. Can J Chem 94(8):659–666

    Article  CAS  Google Scholar 

  110. Raei H, Jahanshahi M, Morad H (2022) Three-layer sandwich-like drug-loaded nanofibers of insulin, titanium oxide nanotubes and nitroglycerin as a promising wound healing candidate. Mater Chem Phys 292:126767

    Article  CAS  Google Scholar 

  111. Altinkok C, Karabulut HF, Tasdelen MA, Acik G (2020) Bile acid bearing poly (vinyl chloride) nanofibers by combination of CuAAC click chemistry and electrospinning process. Mater Today Commun 25:101425

    Article  CAS  Google Scholar 

  112. Hadinejad F, Jahanshahi M, Morad H (2021) Microwave-assisted and ultrasonic phyto-synthesis of copper nanoparticles: a comparison study. Nano Biomedicine Eng 13(1):6–19

    CAS  Google Scholar 

  113. Morad H et al (2021) Formulation, optimization and evaluation of nanofiber based fast dissolving drug delivery system of colchicine for pediatrics. Int J Pediatr 9(3):13213–13224

    CAS  Google Scholar 

  114. Wenseleers W et al (2004) Efficient isolation and solubilization of pristine single-walled nanotubes in bile salt micelles. Adv Func Mater 14(11):1105–1112

    Article  CAS  Google Scholar 

  115. Palekar-Shanbhag P, Lande S, Chandra R, Rane D (2020) Bilosomes: superior vesicular carriers. Curr Drug Therapy 15(4):312–320

    Article  CAS  Google Scholar 

  116. Uddin MN, Allon A, Roni MA, Kouzi S (2019) Overview and future potential of fast dissolving buccal films as drug delivery system for vaccines. J Pharm Pharm Sci 22:388–406

    Article  CAS  PubMed  Google Scholar 

  117. Soliman MO et al (2023) Lactoferrin decorated bilosomes for the oral delivery of quercetin in type 2 diabetes: in vitro and in vivo appraisal. Int J Pharm 647:123551

    Article  CAS  PubMed  Google Scholar 

  118. Liu C, Guo Y, Cheng Y, Qian H (2023) Torularhodin-Loaded bilosomes ameliorate lipid accumulation and amino acid metabolism in hypercholesterolemic mice. J Agric Food Chem 71(7):3250–3260

    Article  CAS  Google Scholar 

  119. Youness RA et al (2023) Oral delivery of psoralidin by mucoadhesive surface-modified bilosomes showed boosted apoptotic and necrotic effects against breast and lung cancer cells. Polymers 15(6):1464

    Article  CAS  PubMed  Google Scholar 

  120. Salem HF et al (2023) Budesonide-loaded bilosomes as a targeted delivery therapeutic approach against acute lung injury in rats. J Pharm Sci 112(3):760–770

    Article  CAS  PubMed  Google Scholar 

  121. Chacko IA, Ghate VM, Dsouza L, Lewis SA (2020) Lipid vesicles: a versatile drug delivery platform for dermal and transdermal applications. Colloids Surf, B 195:111262

    Article  CAS  Google Scholar 

  122. Abdel-moneum R and Abdel-Rashid RS (2022) Bile salt stabilized nanovesicles as a promising drug delivery technology: a general overview and future perspectives. J Drug Deliv SciTechnol 104057

  123. Gupta DK et al (2022) Bilosomes: a novel platform for drug delivery. Elsevier, Systems of Nanovesicular Drug Delivery, pp 293–309

    Google Scholar 

  124. Mondal D, Mandal RP, De S (2022) Addressing the superior drug delivery performance of bilosomes─ a microscopy and fluorescence study. ACS Appl Bio Mater 5(8):3896–3911

    Article  CAS  PubMed  Google Scholar 

  125. AbuBakr A-H et al (2023) Therapeutic potential of cationic bilosomes in the treatment of carrageenan-induced rat arthritis via fluticasone propionate gel. Int J Pharm 635:122776

    Article  CAS  PubMed  Google Scholar 

  126. Elkomy MH et al (2022) Surface-modified bilosomes nanogel bearing a natural plant alkaloid for safe management of rheumatoid arthritis inflammation. Pharmaceutics 14(3):563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Sultan AA, Saad GA, El Maghraby GM (2023) Permeation enhancers loaded bilosomes for improved intestinal absorption and cytotoxic activity of doxorubicin. Int J Pharm 630:122427

    Article  CAS  PubMed  Google Scholar 

  128. Hegazy H, Amin MM, Fayad W, Zakaria MY (2022) TPGS surface modified bilosomes as boosting cytotoxic oral delivery systems of curcumin against doxorubicin resistant MCF-7 breast cancer cells. Int J Pharm 619:121717

    Article  CAS  PubMed  Google Scholar 

  129. Balakrishnan A, Polli JE (2006) Apical sodium dependent bile acid transporter (ASBT, SLC10A2): a potential prodrug target. Mol Pharm 3(3):223–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Dawson PA, Karpen SJ (2015) Intestinal transport and metabolism of bile acids. J Lipid Res 56(6):1085–1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Waglewska E, Pucek-Kaczmarek A and Bazylińska U (2020) Novel surface-modified bilosomes as functional and biocompatible nanocarriers of hybrid compounds. Nanomaterials (Basel) 10(12)

  132. Guan P, Lu Y, Qi J, Wu W (2016) Readily restoring freeze-dried probilosomes as potential nanocarriers for enhancing oral delivery of cyclosporine A. Colloids Surf, B 144:143–151

    Article  CAS  Google Scholar 

  133. Haritha P and Lakshmi P (2020) Probilosomes: a novel bile salt containing nanocarrier for enhancing oral bioavailability. Int J Pharm Investig 10(1)

  134. Hao F et al (2016) Improvement of oral availability of ginseng fruit saponins by a proliposome delivery system containing sodium deoxycholate. Saudi J Biol Sci 23(1):S113–S125

    Article  CAS  PubMed  Google Scholar 

  135. Pigliacelli C et al (2023) Interaction of polymers with bile salts–impact on solubilisation and absorption of poorly water-soluble drugs. Colloids Surf, B 222:113044

    Article  CAS  Google Scholar 

  136. Liu C, Guo Y, Cheng Y, Qian H (2022) Bilosomes: a controlled delivery system for the sustained release of torularhodin during digestion in the small intestine both in vitro and in vivo. Colloids Surf, A 654:130055

    Article  CAS  Google Scholar 

  137. Mohsen AM, Salama A, Kassem AA (2020) Development of acetazolamide loaded bilosomes for improved ocular delivery: preparation, characterization and in vivo evaluation. J Drug Deliv Sci Technol 59:101910

    Article  CAS  Google Scholar 

  138. Elnaggar YS, Omran S, Hazzah HA, Abdallah OY (2019) Anionic versus cationic bilosomes as oral nanocarriers for enhanced delivery of the hydrophilic drug risedronate. Int J Pharm 564:410–425

    Article  CAS  PubMed  Google Scholar 

  139. Salama A, El-Hashemy HA, Darwish AB (2022) Formulation and optimization of lornoxicam-loaded bilosomes using 23 full factorial design for the management of osteoarthritis in rats: modulation of MAPK/Erk1 signaling pathway. J Drug Deliv Sci Technol 69:103175

    Article  CAS  Google Scholar 

  140. El-Nabarawi MA, Shamma RN, Farouk F, Nasralla SM (2020) Bilosomes as a novel carrier for the cutaneous delivery for dapsone as a potential treatment of acne: preparation, characterization and in vivo skin deposition assay. J Liposome Res 30(1):1–11

    Article  CAS  PubMed  Google Scholar 

  141. Abbas H, Gad HA, Khattab MA, Mansour M (2021) The tragedy of Alzheimer’s disease: towards better management via resveratrol-loaded oral bilosomes. Pharmaceutics 13(10):1635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Waglewska E, Pucek-Kaczmarek A, Bazylińska U (2022) Self-assembled bilosomes with stimuli-responsive properties as bioinspired dual-tunable nanoplatform for pH/temperature-triggered release of hybrid cargo. Colloids Surf, B 215:112524

    Article  CAS  Google Scholar 

  143. Durník R, Šindlerová L, Babica P, Jurček O (2022) Bile acids transporters of enterohepatic circulation for targeted drug delivery. Molecules 27(9):2961

    Article  PubMed  PubMed Central  Google Scholar 

  144. Mishra R, Mishra S (2020) Updates in bile acid-bioactive molecule conjugates and their applications. Steroids 159:108639

    Article  CAS  PubMed  Google Scholar 

  145. Jha SK et al (2020) Enhanced antitumor efficacy of bile acid-lipid complex-anchored docetaxel nanoemulsion via oral metronomic scheduling. J Control Release 328:368–394

    Article  CAS  PubMed  Google Scholar 

  146. Lei K et al (2021) Research progress in the application of bile acid-drug conjugates: a “trojan horse″ strategy. Steroids 173:108879

    Article  CAS  PubMed  Google Scholar 

  147. Xiao L et al (2019) Transporter-targeted bile acid-camptothecin conjugate for improved oral absorption. Chem Pharm Bull (Tokyo) 67(10):1082–1087

    Article  CAS  PubMed  Google Scholar 

  148. Zou X et al (2021) Study on the structure-activity relationship of dihydroartemisinin derivatives: discovery, synthesis, and biological evaluation of dihydroartemisinin-bile acid conjugates as potential anticancer agents. Eur J Med Chem 225:113754

    Article  CAS  PubMed  Google Scholar 

  149. Sreekanth V, Bajaj A (2019) Recent advances in engineering of lipid drug conjugates for cancer therapy. ACS Biomater Sci Eng 5(9):4148–4166

    Article  CAS  PubMed  Google Scholar 

  150. Sreekanth V et al (2021) Self-assembled supramolecular nanomicelles from a bile acid–docetaxel conjugate are highly tolerable with improved therapeutic efficacy. Biomater Sci 9(16):5626–5639

    Article  CAS  PubMed  Google Scholar 

  151. Sreekanth V et al (2021) Bile acid tethered docetaxel-based nanomicelles mitigate tumor progression through epigenetic changes. Angew Chem Int Ed 60(10):5394–5399

    Article  CAS  Google Scholar 

  152. Chen D-q et al (2011) Novel liver-specific cholic acid-cytarabine conjugates with potent antitumor activities: synthesis and biological characterization. Acta Pharmacol Sin 32(5):664–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Zhang D et al (2016) Transporter-targeted cholic acid-cytarabine conjugates for improved oral absorption. Int J Pharm 511(1):161–169

    Article  CAS  PubMed  Google Scholar 

  154. Gao Y et al (2021) Zwitterion-functionalized mesoporous silica nanoparticles for enhancing oral delivery of protein drugs by overcoming multiple gastrointestinal barriers. J Colloid Interface Sci 582:364–375

    Article  CAS  PubMed  Google Scholar 

  155. Lin C et al (2021) Recent progress in bile acid-based antimicrobials. Bioconjug Chem 32(3):395–410

    Article  CAS  PubMed  Google Scholar 

  156. Thareja A et al (2021) Penetration enhancers for topical drug delivery to the ocular posterior segment—a systematic review. Pharmaceutics 13(2):276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Kim D et al (2019) A novel transdermal delivery system based on a bile acid-conjugated nanoparticle model for cosmetics. Asian J Beauty Cosmetology 17(1):81–91

    Article  Google Scholar 

  158. Kumar S et al (2021) Nonimmunogenic hydrogel-mediated delivery of antibiotics outperforms clinically used formulations in mitigating wound infections. ACS Appl Mater Interfaces 13(37):44041–44053

    Article  CAS  PubMed  Google Scholar 

  159. Wang SY et al (2020) Development of microRNA-21 mimic nanocarriers for the treatment of cutaneous wounds. Theranostics 10(7):3240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Mann JF et al (2004) Optimisation of a lipid based oral delivery system containing A/Panama influenza haemagglutinin. Vaccine 22(19):2425–2429

    Article  CAS  PubMed  Google Scholar 

  161. Mann JF et al (2006) Oral delivery of tetanus toxoid using vesicles containing bile salts (bilosomes) induces significant systemic and mucosal immunity. Methods 38(2):90–95

    Article  CAS  PubMed  Google Scholar 

  162. Shukla A et al (2008) Oral immunization against hepatitis B using bile salt stabilized vesicles (bilosomes). J Pharm Pharm Sci 11(1):59–66

    Article  CAS  PubMed  Google Scholar 

  163. Langley KE, Bitter GA, Sachdev RK and Fieschko JC (1993). A hepatitis b vaccine formulation incorporating a bile acid salt, Google Patents

  164. Sachdev GABCFELK (1995) Hepatitis B vaccine with bile salt adjuvant. Australia. AU657168B2

  165. Azuar A et al (2019) Cholic acid-based delivery system for vaccine candidates against group A streptococcus. ACS Med Chem Lett 10(9):1253–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. FDA U GRAS Substances (SCOGS) Database

  167. Samareh Fekri M et al (2013) Pulmonary complications of gastric fluid and bile salts aspiration, an experimental study in rat. Iran J Basic Med Sci 16(6):790–796

    PubMed  PubMed Central  Google Scholar 

  168. Aldhahrani A, Verdon B, Ward C and Pearson J (2017) Effects of bile acids on human airway epithelial cells: implications for aerodigestive diseases. ERJ Open Res 3(1)

  169. Kirby J, Heaton K, Burton J (1974) Pruritic effect of bile salts. Br Med J 4(5946):693–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Inderbir Singh or Rajan Swami.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakravarthy, P.S.A., Popli, P., Challa, R.R. et al. Bile salts: unlocking the potential as bio-surfactant for enhanced drug absorption. J Nanopart Res 26, 76 (2024). https://doi.org/10.1007/s11051-024-05985-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-024-05985-6

Keywords

Navigation