Skip to main content
Log in

The Improvement of the Dissolution Rate of Ziprasidone Free Base from Solid Oral Formulations

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

This work aims at increasing solubility and dissolution rate of ziprasidone free base—Biopharmaceutics Classifaction System (BCS) class II compound. The authors describe a practical approach to amorphization and highlight problems that may occur during the development of formulations containing amorphous ziprasidone, which was obtained by grinding in high-energy planetary ball mills or cryogenic mills. The release of ziprasidone free base from the developed formulations was compared to the reference drug product containing crystalline ziprasidone hydrochloride—Zeldox® hard gelatin capsules. All preparations were investigated using compendial tests (USP apparatuses II and IV) as well as novel, biorelevant dissolution tests. The novel test methods simulate additional elements of mechanical and hydrodynamic stresses, which have an impact on solid oral dosage forms, especially during gastric emptying. This step may prove to be particularly important for many formulations of BCS class II drugs that are often characterized by narrow absorption window, such as ziprasidone. The dissolution rate of the developed ziprasidone free base preparations was found to be comparable or even higher than in the case of the reference formulation containing ziprasidone hydrochloride, whose water solubility is about 400 times higher than its free base.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. Benet LZ, Wu CY, Custodio JM. Predicting drug absorption and the effects of food on oral bioavailability. Bull Tech Gattefosse. 2006;99:8.

    Google Scholar 

  2. Kumar A, Sahoo SK, Padhee K, Kochar P, Satapathy A, Pathak N. Review on solubility enhancement techniques for hydrophobic drugs. Pharm Glob. 2011;3(3):001–7.

    Google Scholar 

  3. Bushrab NF, Müller RH. Nanocrystals of poorly soluble drugs for oral administration. New Drugs. 2003;5:20–2.

    Google Scholar 

  4. Lipinski C. Poor aqueous solubility—an industry wide problem in drug discovery. Am Pharm Rev. 2002;2:82–5.

    Google Scholar 

  5. Yadav VB, Yadav AV. Enhancement of solubility and dissolution rate of BCS class II pharmaceuticals by nonaquious granulation technique. Int J Pharm Res Dev. 2010;12:1–12.

    Google Scholar 

  6. Florence AT, Attwood D. Drug absorption and routes of administration. In: Physicochemical principles of pharmacy. 4th ed. London: Pharmaceutical Press; 2006. p. 329–91.

    Google Scholar 

  7. Dressman JB, Thelen K, Jantratid E. Towards quantitative prediction of oral drug absorption. Clin Pharmacokinet. 2008;47(10):655–67. doi:10.2165/00003088-200847100-00003.

    Article  CAS  PubMed  Google Scholar 

  8. Adrjanowicz K, Grzybowska K, Kaminski K, Hawelek L, Paluch M, Zakowiecki D. Comprehensive studies on physical and chemical stability in liquid and glassy states of telmisartan (TEL): solubility advantages given by cryomilled and quenched material. Philos Mag. 2011;91(13–15):1926–48. doi:10.1080/14786435.2010.534742.

    Article  CAS  Google Scholar 

  9. Adrjanowicz K, Kaminski K, Grzybowska K, Hawelek L, Paluch M, Gruszka I, et al. Effect of cryogrinding on chemical stability of the sparingly water-soluble drug furosemide. Pharm Res. 2011;28(12):3220–36. doi:10.1007/s11095-011-0496-4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Kaminska E, Adrjanowicz K, Kaminski K, Wlodarczyk P, Hawelek L, Kolodziejczyk K, et al. A new way of stabilization of furosemide upon cryogenic grinding by using acylated saccharides matrices. The role of hydrogen bonds in decomposition mechanism. Mol Pharm. 2013;10(5):1824–35.

    Article  CAS  PubMed  Google Scholar 

  11. Kaminski K, Adrjanowicz K, Wojnarowska Z, Grzybowska K, Hawelek L, Paluch M, et al. Molecular dynamics of the cryomilled base and hydrochloride ziprasidones by means of dielectric spectroscopy. J Pharm Sci. 2011;100(7):2642–57. doi:10.1002/jps.22479.

    Article  CAS  PubMed  Google Scholar 

  12. Tarnacka M, Adrjanowicz K, Kaminska E, Kaminski K, Grzybowska K, Kolodziejczyk K, et al. Molecular dynamics of itraconazole at ambient and high pressure. Phys Chem Chem Phys. 2013;15(47):20742–52.

    Article  CAS  PubMed  Google Scholar 

  13. Murdande SB, Pikal MJ, Shanker RM, Bogner RH. Solubility advantage of amorphous pharmaceuticals: II. Application of quantitative thermodynamic relationships for prediction of solubility enhancement in structurally diverse insoluble pharmaceuticals. Pharm Res. 2010;27(12):2704–14. doi:10.1007/s11095-010-0269-5.

    Article  CAS  PubMed  Google Scholar 

  14. Hancock BC, Parks M. What is the true solubility advantage for amorphous pharmaceuticals? Pharm Res. 2000;17(4):397–404.

    Article  CAS  PubMed  Google Scholar 

  15. Adrjanowicz K, Zakowiecki D, Kaminski K, Hawelek L, Grzybowska K, Tarnacka M, et al. Molecular dynamics in supercooled liquid and glassy states of antibiotics: azithromycin, clarithromycin and roxithromycin studied by dielectric spectroscopy. Advantages given by the amorphous state. Mol Pharm. 2012;9(6):1748–63.

    Article  CAS  PubMed  Google Scholar 

  16. Kaminski K, Kaminska E, Adrjanowicz K, Grzybowiska K, Wlodarczyk P, Paluch M, et al. Dielectric relaxation study on tramadol monohydrate and its hydrochloride salt. J Pharm Sci. 2010;99(1):94–106. doi:10.1002/jps.21799.

    Article  CAS  PubMed  Google Scholar 

  17. Taylor D. Ziprasidone in the management of schizophrenia: the QT interval issue in context. CNS Drugs. 2003;17(6):423–30.

    Article  CAS  PubMed  Google Scholar 

  18. Cada DJ, Levien T, Baker DE. Ziprasidone. Hosp Pharm. 2001;36:645–56.

    Google Scholar 

  19. Daniel DG, Copeland LF, Tamminga C. Ziprasidone. In: In Schatzberg AF, Nemeroff CB, editors. Essentials of clinical psychopharmacology. Washington: American Psychiatric Publishing; 2006. p. 297–305.

  20. Deshmukh SS, Potnis VV, Mahaparale PR, Kasture PV, Gharge VS. Development and evaluation of ziprasidone hydrochloride fast disintegrating/dissolving tablets using complexation techniques. Indian J Pharm Educ Res. 2009;43(4):300–7.

    Google Scholar 

  21. Pfizer. Briefing document for Zeldox® capsules (ziprasidone HCl) for FDA Psychopharmacological Drugs Advisory Committee. 2000.

  22. Pfizer. Zeldox®, Package Insert. 2001.

  23. Howard HR, Prakash C, Seeger TF. Ziprasidone hydrochloride. Drugs Future. 1994;19(6):560–3.

    Article  Google Scholar 

  24. Busch FR, Hausberger ACG, Rasadi B, Arenson DR. Zirpasidone formulations, EP0965343. 1999.

  25. Garbacz G, Klein S, Weitschies W. A biorelevant dissolution stress test device—background and experiences. Expert Opin Drug Deliv. 2010;7(11):1251–61. doi:10.1517/17425247.2010.527943.

    Article  CAS  PubMed  Google Scholar 

  26. Garbacz G, Weitschies W. Investigation of dissolution behavior of diclofenac sodium extended release formulations under standard and biorelevant test conditions. Drug Dev Ind Pharm. 2010;36(5):518–30. doi:10.3109/03639040903311081.

    Article  CAS  PubMed  Google Scholar 

  27. Garbacz G, Cade D, Benameur H, Weitschies W. Bio-relevant dissolution testing of hard capsules prepared from different shell materials using the dynamic open flow through test apparatus. Eur J Pharm Sci. 2014;57:264–72.

    Article  CAS  PubMed  Google Scholar 

  28. NFT20-045. Chemical products for industrial use—determination of water solubility of solid and liquids with low solubility-flask method. 1985.

  29. Zakowiecki D, Cal K. Development of rapid and robust stability-indicating method for analysis of ziprasidone (hydrochloride and freebase) as drug substance and in medicines by UPLC. Acta Pol Pharm. 2012;69(5):809–19.

    CAS  PubMed  Google Scholar 

  30. Garbacz G, Blume H, Weitschies W. Investigation of the dissolution characteristics of nifedipine extended-release formulations using USP apparatus 2 and a novel dissolution apparatus. Dissolut Technol. 2009;16:7–13.

    Article  CAS  Google Scholar 

  31. Garbacz G, Golke B, Wedemeyer RS, Axell M, Soderlind E, Abrahamsson B, et al. Comparison of dissolution profiles obtained from nifedipine extended release once a day products using different dissolution test apparatuses. Eur J Pharm Sci. 2009;38(2):147–55.

    Article  CAS  PubMed  Google Scholar 

  32. Garbacz G, Wedemeyer RS, Nagel S, Giessmann T, Monnikes H, Wilson CG, et al. Irregular absorption profiles observed from diclofenac extended release tablets can be predicted using a dissolution test apparatus that mimics in vivo physical stresses. Eur J Pharm Biopharm. 2008;70(2):421–8.

  33. NDA20-825. Clinical Pharmacology and Biopharmaceutics Review. (20.10.2000). 2000.

  34. ICH. CPMP/ICH/283/95 – ICH Topic Q3C (R4) Impurities: Guideline for residual solvents. London, February 2009. 2009.

  35. U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER). Guidance for Industry. Waiver of In Vivo Bioavailability and Bioequivalence Studies for Immediate-Release Solid Oral Dosage Forms Based on a Biopharmaceutics Classification System. In: CDER, 2000.

  36. Abrahamsson B, Lennernäs H. Application of the Biopharmaceutics Classification System now and in the future. Drug bioavailability: estimation of solubility, permeability, absorption and bioavailability,. In: In van de Waterbeemd H, Thesta B, editors. Application of the Biopharmaceutics Classification System now and in the future Wiley-VCH 2nd ed.; 2009. p. 523–612.

  37. Miceli JJ, Glue P, Alderman J, Wilner K. The effect of food on the absorption of oral ziprasidone. Psychopharmacol Bull. 2007;40(3):58–68.

    PubMed  Google Scholar 

  38. Pfizer. ZELDOX® (ziprasidone hydrochloride) capsules 20, 40, 60, and 80 mg - Product Monograph. Kirkland, Quebec, Canada 2011.

  39. Craig DQ, Royall PG, Kett VL, Hopton ML. The relevance of the amorphous state to pharmaceutical dosage forms: glassy drugs and freeze dried systems. Int J Pharm. 1999;179(2):179–207.

    Article  CAS  PubMed  Google Scholar 

  40. Hancock BC, Zografi G. Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci. 1997;86(1):1–12.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

Karolina Adrjanowicz acknowledges financial assistance from the National Centre for Research and Development (Nanomaterials and their potential application in nanobiomedicine).

Kaminska Ewa is thankful for the financial support from the National Center of Science based on decision DEC-2013/09/D/NZ7/04194

Grzegorz Garbacz would like to thank the German Federal Ministry of Education and Research for the financial support (BMBF FKZ 03IPT612C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Zakowiecki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakowiecki, D., Cal, K., Kaminski, K. et al. The Improvement of the Dissolution Rate of Ziprasidone Free Base from Solid Oral Formulations. AAPS PharmSciTech 16, 922–933 (2015). https://doi.org/10.1208/s12249-015-0285-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-015-0285-1

KEY WORDS

Navigation