Skip to main content
Log in

Excipient Stability in Oral Solid Dosage Forms: A Review

  • Mini-Review
  • Theme: Stability of Pharmaceutical Excipients
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The choice of excipients constitutes a major part of preformulation and formulation studies during the preparation of pharmaceutical dosage forms. The physical, mechanical, and chemical properties of excipients affect various formulation parameters, such as disintegration, dissolution, and shelf life, and significantly influence the final product. Therefore, several studies have been performed to evaluate the effect of drug-excipient interactions on the overall formulation. This article reviews the information available on the physical and chemical instabilities of excipients and their incompatibilities with the active pharmaceutical ingredient in solid oral dosage forms, during various drug-manufacturing processes. The impact of these interactions on the drug formulation process has been discussed in detail. Examples of various excipients used in solid oral dosage forms have been included to elaborate on different drug-excipient interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blecher L. Excipients—the important components. Pharm Process. 1995;12(1):6–7.

    Google Scholar 

  2. Russell R. Synthetic excipients challenge all-natural organics: offer advantages/challenges to developers and formulators. Pharm Technol. 2004;28(4):38–50.

    CAS  Google Scholar 

  3. Chaudhari SP, Patil PS. Pharmaceutical excipients: a review. Int J Adv Pharm Biol Chem. 2012;1:21–34.

    Google Scholar 

  4. Lachman L, Liebermann HA, Kanig JL, editors. The theory and practice of industrial pharmacy. 3rd ed. Philadelphia: Lea & Febiger; 1986. p. 902.

    Google Scholar 

  5. Zhou D. Understanding physicochemical properties for pharmaceutical product development and manufacturing II: physical and chemical stability and excipient compatibility. J Valid Technol. 2009;15(3):36.

    Google Scholar 

  6. Kaushal AM, Vangala VR, Suryanarayanan R. Unusual effect of water vapor pressure on dehydration of dibasic calcium phosphate dihydrate. J Pharm Sci. 2011;100(4):1456–66.

    Article  CAS  PubMed  Google Scholar 

  7. Ehler KF, Bernhard RA, Nickerson TA. Heats of adsorption of small molecules on various forms of lactose, sucrose, and glucose. J Agric Food Chem. 1979;27(5):921–7.

    Article  CAS  Google Scholar 

  8. Fäldt P, Bergenståhl B. Changes in surface composition of spray-dried food powders due to lactose crystallization. LWT - Food Sci Technol. 1996;29(5–6):438–46.

    Article  Google Scholar 

  9. Mura P. Utilization of differential scanning calorimetry as a screening technique to determine the compatibility of ketoprofen with excipients. Int J Pharm. 1995;119(1):71–9.

    Article  CAS  Google Scholar 

  10. Eyjolfsson R. Lisinopril-lactose incompatibility. Drug Dev Ind Pharm. 1998;24(8):797–8.

    Article  CAS  PubMed  Google Scholar 

  11. Botha SA, Lötter AP. Compatiblity study between oxprenolol hydrochloride, temazepam and tablet excipients using differential scanning calorimetry. Drug Dev Ind Pharm. 1990;16(2):331–45.

    Article  CAS  Google Scholar 

  12. Rowe RC, Sheskey PJ, Owen SC, American Pharmacists Association, editors. Handbook of pharmaceutical excipients /: edited by Raymond C. Rowe, Paul J. Sheskey, Marian E. Quinn. 6th ed. Chicago, APhA/Pharmaceutical Press; 2009. p. 888.

  13. Zhang J, Lu F, Yu W, Lu R, Xu J. Effects of alkaline additives on the formation of lactic acid in sorbitol hydrogenolysis over Ni/C catalyst. Chin J Catal. 2016;37(1):177–83.

    Article  CAS  Google Scholar 

  14. Laroque D, Inisan C, Berger C, Vouland É, Dufossé L, Guérard F. Kinetic study on the Maillard reaction. Consideration of sugar reactivity. Food Chem. 2008;111(4):1032–42.

    Article  CAS  Google Scholar 

  15. Daraghmeh N, Rashid I, Al Omari MMH, Leharne SA, Chowdhry BZ, Badwan A. Preparation and characterization of a novel co-processed excipient of chitin and crystalline Mannitol. AAPS PharmSciTech. 2010;11(4):1558–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lesse T, Zhao D-C. Interactions between drug substances and excipients. 1. Fluorescence and HPLC studies of Triazolophthalazine derivatives from hydralazine hydrochloride and starch†† presented at the PharmAnalysis conference ‘95, Atlantic City, NJ, June 1995. J Pharm Sci. 1996;85(3):326–9.

    Article  Google Scholar 

  17. Desai DS, Rubitski BA, Bergum JS, Varia SA. Effects of different types of lactose and disintegrant on dissolution stability of hydrochlorothiazide capsule formulations. Int J Pharm. 1994;110(3):257–65.

    Article  CAS  Google Scholar 

  18. Al-Nimry SS, Assaf SM, Jalal IM, Najib NM. Adsorption of ketotifen onto some pharmaceutical excipients. Int J Pharm. 1997;149(1):115–21.

    Article  CAS  Google Scholar 

  19. Zografi G, Kontny MJ. The interactions of water with cellulose-and starch-derived pharmaceutical excipients. Pharm Res. 1986;3(4):187–94.

    Article  CAS  PubMed  Google Scholar 

  20. Islam AM, Phillips GO, Sljivo A, Snowden MJ, Williams PA. A review of recent developments on the regulatory, structural and functional aspects of gum arabic. Food Hydrocoll. 1997;11(4):493–505.

    Article  CAS  Google Scholar 

  21. Phillips GO, Williams PA. Handbook of hydrocolloids. Repr. Boca Raton, Fla.: CRC Press [u.a.]; 2005. p. 450. (Woodhead publishing in food science and technology)

    Google Scholar 

  22. Balaghi S, Mohammadifar MA, Zargaraan A. Physicochemical and rheological characterization of gum tragacanth exudates from six species of Iranian Astragalus. Food Biophys. 2010;5(1):59–71.

    Article  Google Scholar 

  23. Anderson DMW, Bridgeman MME. The composition of the proteinaceous polysaccharides exuded by Astragalus microcephalus, A. Gummifer and A. Kurdicus—the sources of turkish gum tragacanth. Phytochemistry. 1985;24(10):2301–4.

    Article  CAS  Google Scholar 

  24. López-Castejón ML, Bengoechea C, García-Morales M, Martínez I. Effect of plasticizer and storage conditions on thermomechanical properties of albumen/tragacanth based bioplastics. Food Bioprod Process. 2015;95:264–71.

    Article  CAS  Google Scholar 

  25. Fitzpatrick S, McCabe JF, Petts CR, Booth SW. Effect of moisture on polyvinylpyrrolidone in accelerated stability testing. Int J Pharm. 2002;246(1–2):143–51.

    Article  CAS  PubMed  Google Scholar 

  26. Dong Z, Choi DS. Hydroxypropyl methylcellulose acetate succinate: potential drug–excipient incompatibility. AAPS PharmSciTech. 2008;9(3):991–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Odeku OA, Akinwande BL. Effect of the mode of incorporation on the disintegrant properties of acid modified water and white yam starches. Saudi Pharm J. 2012;20(2):171–5.

    Article  PubMed  Google Scholar 

  28. Desai PM, Liew CV, Heng PWS. Review of disintegrants and the disintegration phenomena. J Pharm Sci. 2016;105(9):2545–55.

    Article  CAS  PubMed  Google Scholar 

  29. Jackson K, Young D, Pant S. Drug–excipient interactions and their affect on absorption. Pharm Sci Technol Today. 2000;3(10):336–45.

    Article  CAS  PubMed  Google Scholar 

  30. Mohamed MB, Talari MK, Tripathy M, Majeed ABA. Pharmaceutical applications of crospovidone: a review. Int J Drug Form Res. 2012;3:13–28.

    Google Scholar 

  31. Balasubramaniam J, Bindu K, Rao VU, Ray D, Haldar R, Brzeczko AW. Effect of superdisintegrants on dissolution of cationic drugs. Dissolution Technol. 2008;15(2):18–25.

    Article  CAS  Google Scholar 

  32. Bindra DS, Stein D, Pandey P, Barbour N. Incompatibility of croscarmellose sodium with alkaline excipients in a tablet formulation. Pharm Dev Technol. 2014;19(3):285–9.

    Article  CAS  PubMed  Google Scholar 

  33. Bühler V. Polyvinylpyrrolidone excipients for pharmaceuticals: povidone, crospovidone and copovidone. Springer Science & Business Media. 2005.

  34. Patel S, Kaushal AM, Bansal AK. The effect of starch paste and sodium starch glycolate on the compaction behavior of wet granulated acetaminophen formulation. J Excip Food Chem. 2011;2(3):64–72.

    CAS  Google Scholar 

  35. Panakanti R, Narang AS. Impact of excipient interactions on drug bioavailability from solid dosage forms. Pharm Res. 2012;29(10):2639–59.

    Article  CAS  PubMed  Google Scholar 

  36. Jarosz PJ, Parrott EL. Effect of lubricants on tensile strengths of tablets. Drug Dev Ind Pharm. 1984;10(2):259–73.

    Article  CAS  Google Scholar 

  37. Miller T, York P. Pharmaceutical tablet lubrication. Int J Pharm. 1988;41(1–2):1–19.

    Article  CAS  Google Scholar 

  38. Schildcrout SA, Risley DS, Kleemann RL. Drug-excipient interactions of seproxetine maleate hemi-hydrate: isothermal stress methods. Drug Dev Ind Pharm. 1993;19(10):1113–30.

    Article  CAS  Google Scholar 

  39. Deer WA, Howie RA, Zussman J. An introduction to the rock-forming minerals, vol. Vol. 696. London: Longman; 1992.

    Google Scholar 

  40. Ross M. A definition for talc. Am Soc Test Mater Phila. 1984; 193.

  41. Burdukova E, Becker M, Bradshaw D, Laskowski J. Presence of negative charge on the basal planes of New York talc. J Colloid Interface Sci. 2007;315(1):337–42.

    Article  CAS  PubMed  Google Scholar 

  42. Flament M-P, Leterme P, Bizi M, Baudet G, Gayot A. Study of talcs as antisticking agents in the production of tablets. Eur J Pharm Sci. 2002;17(4):239–45.

    Article  CAS  PubMed  Google Scholar 

  43. Cotton M, Wu D, Vadas E. Drug-excipient interaction study of enalapril maleate using thermal analysis and scanning electron microscopy. Int J Pharm. 1987;40(1–2):129–42.

    Article  CAS  Google Scholar 

  44. Devi M, Babu P. Drug-excipient interaction studies on enalapril maleate. Int J Pharm Excip. 2000;2:153–8.

    CAS  Google Scholar 

  45. Marshall JJ, Grand RJ. Characterization of a beta-1,4-glucan hydrolase from the snail. Comp Biochem Physiol B. 1976;53(2):231–7.

    Article  CAS  PubMed  Google Scholar 

  46. Ando M, Ito R, Ozeki Y, Nakayama Y, Nabeshima T. Evaluation of a novel sugar coating method for moisture protective tablets. Int J Pharm. 2007;336(2):319–28.

    Article  CAS  PubMed  Google Scholar 

  47. Barnes CE. Chemical nature of shellac. Ind Eng Chem. 1938;30(4):449–51.

    Article  CAS  Google Scholar 

  48. Nath Goswami D, Prasad N, Baboo B, Kishore Kumar K, Fahim AM. Degradation of lac with storage and a simple method to check the same. Pigment Resin Technol. 2009;38(4):211–7.

    Article  CAS  Google Scholar 

  49. Specht F, Saugestad M, Waaler T, Müller B. The application of shellac as an acidic polymer for enteric coating. Pharm Technol. 1999;23(3):146–54.

    CAS  Google Scholar 

  50. Limmatvapirat S, Limmatvapirat C, Puttipipatkhachorn S, Nuntanid J, Luangtana-anan M. Enhanced enteric properties and stability of shellac films through composite salts formation. Eur J Pharm Biopharm. 2007;67(3):690–8.

    Article  CAS  PubMed  Google Scholar 

  51. Farag Y. Characterization of different shellac types and development of shellac coated dosage forms. 2010.

  52. Shukla R, Cheryan M. Zein: the industrial protein from corn. Ind Crop Prod. 2001;13(3):171–92.

    Article  CAS  Google Scholar 

  53. Hancock BC, Dalton CR. The effect of temperature on water vapor sorption by some amorphous pharmaceutical sugars. Pharm Dev Technol. 1999;4(1):125–31.

    Article  CAS  PubMed  Google Scholar 

  54. Ford JL. Design and evaluation of hydroxypropyl methylcellulose matrix tablets for oral controlled release: a historical perspective. In: Hydrophilic matrix tablets for oral controlled release. Springer; 2014. p. 17–51.

  55. Maggi L, Segale L, Ochoa Machiste E, Buttafava A, Faucitano A, Conte U. Chemical and physical stability of hydroxypropylmethylcellulose matrices containing diltiazem hydrochloride after gamma irradiation. J Pharm Sci. 2003;92(1):131–41.

    Article  CAS  PubMed  Google Scholar 

  56. Lai HL, Pitt K, Craig DQM. Characterisation of the thermal properties of ethylcellulose using differential scanning and quasi-isothermal calorimetric approaches. Int J Pharm. 2010;386(1–2):178–84.

    Article  CAS  PubMed  Google Scholar 

  57. McBurney LF. Oxidative stability of cellulose derivatives—heat stability of ethylcellulose. Ind Eng Chem. 1949;41(6):1251–6.

    Article  CAS  Google Scholar 

  58. Evans EF, McBurney LF. Ultraviolet light stability of ethylcellulose. Ind Eng Chem. 1949;41(6):1256–60.

    Article  CAS  Google Scholar 

  59. TENG OK. Influence of additives on ethylcellulose coatings. 2006.

  60. Bharate SS, Bharate SB, Bajaj AN. Incompatibilities of pharmaceutical excipients with active pharmaceutical ingredients: a comprehensive review. J Excip Food Chem. 2010;1(3):3–26.

    CAS  Google Scholar 

  61. Sarisuta N, Lawanprasert P, Puttipipatkhachorn S, Srikummoon K. The influence of drug-excipient and drug-polymer interactions on butt adhesive strength of ranitidine hydrochloride film-coated tablets. Drug Dev Ind Pharm. 2006;32(4):463–71.

    Article  CAS  PubMed  Google Scholar 

  62. Khan K, Rhodes C. Water-sorption properties of tablet disintegrants. J Pharm Sci. 1975;64(3):447–51.

    Article  CAS  PubMed  Google Scholar 

  63. Chu P-I, Doyle D. Development and evaluation of a laboratory-scale apparatus to simulate the scale-up of a sterile semisolid and effects of manufacturing parameters on product viscosity. Pharm Dev Technol. 1999;4(4):553–9.

    Article  CAS  PubMed  Google Scholar 

  64. Rhodes C, Banker. A hand book of modern pharmaceutics. 4th ed.

  65. Moe D, Hamed E, Hontz J, Khankari R. Binders and solvents. In: Parikh D, editor. Handbook of pharmaceutical granulation technology, Third Edition [Internet]. Informa Healthcare; 2005 [cited 2017 Apr 14]. p. 109–28. Available from: http://www.crcnetbase.com/doi/abs/10.1201/9780849354953.ch4

  66. Thakral S, Thakral NK, Majumdar DK. Eudragit®: a technology evaluation. Expert Opin Drug Deliv. 2013;10(1):131–49.

    Article  CAS  PubMed  Google Scholar 

  67. Bajdik J, Fehér M, Pintye-Hódi K. Effect of plasticizer on surface of free films prepared from aqueous solutions of salts of cationic polymers with different plasticizers. Appl Surf Sci. 2007;253(17):7303–8.

    Article  CAS  Google Scholar 

  68. Serajuddin ATM, Mufson D, Bernstein DF, Sheen P-C, Augustine MA. Effect of vehicle amphiphilicity on the dissolution and bioavailability of a poorly water-soluble drug from solid dispersions. J Pharm Sci. 1988;77(5):414–7.

    Article  CAS  PubMed  Google Scholar 

  69. Petereit H-U, Weisbrod W. Formulation and process considerations affecting the stability of solid dosage forms formulated with methacrylate copolymers. Eur J Pharm Biopharm. 1999;47(1):15–25.

    Article  CAS  PubMed  Google Scholar 

  70. Lin S-Y, Chen K-S, Run-Chu L. Organic esters of plasticizers affecting the water absorption, adhesive property, glass transition temperature and plasticizer permanence of Eudragit acrylic films. J Control Release. 2000;68(3):343–50.

    Article  CAS  PubMed  Google Scholar 

  71. Parikh T, Gupta SS, Meena A, Serajuddin AT. Investigation of thermal and viscoelastic properties of polymers relevant to hot melt extrusion, III: polymethacrylates and polymethacrylic acid based polymers. J Excip Food Chem. 2014;5(1):56–64.

    Google Scholar 

  72. Pignatello R, Ferro M, Puglisi G. Preparation of solid dispersions of nonsteroidal anti-inflammatory drugs with acrylic polymers and studies on mechanisms of drug-polymer interactions. AAPS PharmSciTech. 2002;3(2):35–45.

    Article  PubMed Central  Google Scholar 

  73. Pignatello R, Spadaro D, Vandelli MA, Forni F, Puglisi G. Characterization of the mechanism of interaction in ibuprofen-Eudragit RL100® coevaporates. Drug Dev Ind Pharm. 2004;30(3):277–88.

    Article  CAS  PubMed  Google Scholar 

  74. Ishikawa Y, Katoh Y, Ohshima H. Colloidal stability of aqueous polymeric dispersions: effect of pH and salt concentration. Colloids Surf B Biointerfaces. 2005;42(1):53–8.

    Article  CAS  PubMed  Google Scholar 

  75. Kanig JL. Production and testing of enteric coatings. Drug Stand. 1954;22:113–21.

    CAS  Google Scholar 

  76. Roxin P, Karlsson A, Singh SK. Characterization of cellulose acetate phthalate (CAP). Drug Dev Ind Pharm. 1998;24(11):1025–41.

    Article  CAS  PubMed  Google Scholar 

  77. Delporte J. Effects of ageing on physico-chemical properties of free cellulose acetate phthalate films. Pharm Ind. 1979;41(10):984–90.

    CAS  Google Scholar 

  78. Karlsson A, Singh SK. Thermal and mechanical characterization of cellulose acetate phthalate films for pharmaceutical tablet coating: effect of humidity during measurements. Drug Dev Ind Pharm. 1998;24(9):827–34.

    Article  CAS  PubMed  Google Scholar 

  79. Agyilirah GA, Banker GS, Tarcha P. Polymers for enteric coating applications, vol. 39. Boca Raton: CRC Press; 1991.

    Google Scholar 

  80. Crawford R, Esmerian O. Effect of plasticizers on some physical properties of cellulose acetate phthalate films. J Pharm Sci. 1971;60(2):312–4.

    Article  CAS  PubMed  Google Scholar 

  81. Obara S, McGinity JW. Influence of processing variables on the properties of free films prepared from aqueous polymeric dispersions by a spray technique. Int J Pharm. 1995;126(1–2):1–10.

    Article  CAS  Google Scholar 

  82. Liu J, Williams RO. Long-term stability of heat-humidity cured cellulose acetate phthalate coated beads. Eur J Pharm Biopharm Off J Arbeitsgemeinschaft Pharm Verfahrenstechnik EV. 2002;53(2):167–73.

    Article  CAS  Google Scholar 

  83. Nakamichi K, Izumi S, Yasuura H. Method of manufacturing solid dispersion. 1995.

  84. Stroyer A, McGinity JW, Leopold CS. Solid state interactions between the proton pump inhibitor omeprazole and various enteric coating polymers. J Pharm Sci. 2006;95(6):1342–53.

    Article  CAS  PubMed  Google Scholar 

  85. Tarcha PJ, editor. Polymers for controlled drug delivery. Boca Raton: CRC Press; 1991. p. 286.

    Google Scholar 

  86. Porter S. The use of opadry, coateric, and surelease in the aqueous film coating of pharmaceutical oral dosage forms. In: McGinity, editor. Aqueous polymeric coatings for pharmaceutical dosage forms. New York: Marcel Decker, Inc.; 1989. p. 317–62.

  87. The Pharmaceutical Codex, 11th Ed. The pharmaceutical press, one Lambeth high St., London SE1 7JN, England. 1979. 1101pp. 17×25cm. Price £27. J Pharm Sci. 1980;69(3):368.

    Google Scholar 

  88. Peña LA, Hoggard PE. Hexachlororhodate (III) and the photocatalytic decomposition of chloroform. J Mol Catal Chem. 2010;327(1):20–4.

    Article  CAS  Google Scholar 

  89. Kanakal M, Sakeena M, Azmin M, Yusrida D. Effect of coating solvent ratio on the drug release lag time of coated theophylline osmotic tablets. Trop J Pharm Res. 2009;8(3):239–45.

  90. Snejdrova E, Dittrich M. Pharmaceutically used plasticizers. Recent Adv Plast. 2012:45–68.

  91. Allen LV Jr. Featured excipient: plasticizers. Int J Pharm Compd. 2003;7(2):145.

    Google Scholar 

  92. Vanin F, Sobral P, Menegalli F, Carvalho R, Habitante A. Effects of plasticizers and their concentrations on thermal and functional properties of gelatin-based films. Food Hydrocoll. 2005;19(5):899–907.

    Article  CAS  Google Scholar 

  93. Hsu E, Gebert M, Becker N, Gaertner A. The effects of plasticizers and titanium dioxide on the properties of poly (vinyl alcohol) coatings. Pharm Dev Technol. 2001;6(2):277–84.

    Article  CAS  PubMed  Google Scholar 

  94. Kakinoki K, Yamane K, Teraoka R, Otsuka M, Matsuda Y. Effect of relative humidity on the photocatalytic activity of titanium dioxide and photostability of famotidine. J Pharm Sci. 2004;93(3):582–9.

    Article  CAS  PubMed  Google Scholar 

  95. SAYRE RM, DOWDY JC. Titanium dioxide and zinc oxide induce photooxidation of unsaturated lipids. Cosmet Toilet. 2000;115(10):75–82.

    CAS  Google Scholar 

  96. Moreton RC. Excipient interactions. Excip Dev Pharm Biotechnol Drug Deliv Syst. 2006;93.

  97. Overgaard A, Møller-Sonnergaard J, Christrup L, Højsted J, Hansen R. Patients’ evaluation of shape, size and colour of solid dosage forms. Pharm World Sci. 2001;23(5):185–8.

    Article  CAS  PubMed  Google Scholar 

  98. Pritee SM, Gondkar S, Saudagar R. Int J Pharma Bio Sci ISSN.

  99. Kathpalia H, Sharma K, Doshi G. Recent trends in hard gelatin capsule delivery system. J Adv Pharm Educ Res. 2014;4(2):165–78.

  100. Allen LV, Popovich NG, Ansel HC. Ansel’s pharmaceutical dosage forms and drug delivery systems. 9th ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2011. p. 710.

    Google Scholar 

  101. Rahman MA, Hussain A, Hussain MS, Mirza MA, Iqbal Z. Role of excipients in successful development of self-emulsifying/microemulsifying drug delivery system (SEDDS/SMEDDS). Drug Dev Ind Pharm. 2013;39(1):1–19.

    Article  CAS  PubMed  Google Scholar 

  102. Cole ET, Cadé D, Benameur H. Challenges and opportunities in the encapsulation of liquid and semi-solid formulations into capsules for oral administration. Adv Drug Deliv Rev. 2008;60(6):747–56.

    Article  CAS  PubMed  Google Scholar 

  103. Ling WC. Thermal degradation of gelatin as applied to processing of gel mass. J Pharm Sci. 1978;67(2):218–23.

    Article  CAS  PubMed  Google Scholar 

  104. Benza HI, Munyendo WL. A review of progress and challenges in soft gelatin capsules formulations for oral administration. Int J Pharm Sci Rev Res. 2011;10(1):20–4.

    CAS  Google Scholar 

  105. Murachanian D. Two-piece hard capsules for pharmaceutical formulations. J GXP Compliance. 2010;14(3):31.

    Google Scholar 

  106. Ishida M, Abe K, Hashizume M, Kawamura M. A novel approach to sustained pseudoephedrine release: differentially coated mini-tablets in HPMC capsules. Int J Pharm. 2008;359(1–2):46–52.

    Article  CAS  PubMed  Google Scholar 

  107. Lennartz P, Mielck J. Minitabletting: improving the compactability of paracetamol powder mixtures. Int J Pharm. 1998;173(1):75–85.

    Article  CAS  Google Scholar 

  108. Jalali M, Abedi D, Varshosaz J, Najjarzadeh M, Mirlohi M, Tavakoli N. Stability evaluation of freeze-dried lactobacillus paracasei subsp. tolerance and lactobacillus delbrueckii subsp. bulgaricus in oral capsules. Res Pharm Sci. 2011;7(1):31–6.

    Google Scholar 

  109. Zayed G, Roos YH. Influence of trehalose and moisture content on survival of lactobacillus salivarius subjected to freeze-drying and storage. Process Biochem. 2004;39(9):1081–6.

    Article  CAS  Google Scholar 

  110. Pyne A, Chatterjee K, Suryanarayanan R. Solute crystallization in mannitol–glycine systems—implications on protein stabilization in freeze-dried formulations. J Pharm Sci. 2003;92(11):2272–83.

    Article  CAS  PubMed  Google Scholar 

  111. Kim AI, Akers MJ, Nail SL. The physical state of mannitol after freeze-drying: effects of mannitol concentration, freezing rate, and a noncrystallizing cosolute. J Pharm Sci. 1998;87(8):931–5.

    Article  CAS  PubMed  Google Scholar 

  112. Dubost DC, Kaufman MJ, Zimmerman JA, Bogusky MJ, Coddington AB, Pitzenberger SM. Characterization of a solid state reaction product from a lyophilized formulation of a cyclic heptapeptide. A novel example of an excipient-induced oxidation. Pharm Res. 1996;13(12):1811–4.

    Article  CAS  PubMed  Google Scholar 

  113. Holm R, Porter CJ, Müllertz A, Kristensen HG, Charman WN. Structured triglyceride vehicles for oral delivery of halofantrine: examination of intestinal lymphatic transport and bioavailability in conscious rats. Pharm Res. 2002;19(9):1354–61.

    Article  CAS  PubMed  Google Scholar 

  114. Constantinides PP. Lipid microemulsions for improving drug dissolution and oral absorption: physical and biopharmaceutical aspects. Pharm Res. 1995;12(11):1561–72.

    Article  CAS  PubMed  Google Scholar 

  115. Kimura M, Shizuki M, Miyoshi K, Sakai T, Hidaka H, Takamura H, et al. Relationship between the molecular structures and emulsification properties of edible oils. Biosci Biotechnol Biochem. 1994;58(7):1258–61.

    Article  CAS  Google Scholar 

  116. Hauss DJ, Fogal SE, Ficorilli JV, Price CA, Roy T, Jayaraj AA, et al. Lipid-based delivery systems for improving the bioavailability and lymphatic transport of a poorly water-soluble LTB4 inhibitor. J Pharm Sci. 1998;87(2):164–9.

    Article  CAS  PubMed  Google Scholar 

  117. Frankel E. Lipid oxidation 2nd ed. Bridg UK Oily Pres. 2005.

  118. Nhan PP, Hoa NK. Effect of light and storage time on vitamin E in pharmaceutical products. Br J Pharmacol Toxicol. 2013;4(5):176–80.

    CAS  Google Scholar 

  119. Meinzer A, Mueller E, Vondersher J. Microemulsion—a suitable galenical approach for the absorption enhancement of poorly soluble compounds. Bull Tech-Gattefosse. 1995;88:21–6.

  120. Shah N, Carvajal M, Patel C, Infeld M, Malick A. Self-emulsifying drug delivery systems (SEDDS) with polyglycolyzed glycerides for improving in vitro dissolution and oral absorption of lipophilic drugs. Int J Pharm. 1994;106(1):15–23.

    Article  CAS  Google Scholar 

  121. Ha E, Wang W, John WY. Peroxide formation in polysorbate 80 and protein stability. J Pharm Sci. 2002;91(10):2252–64.

    Article  CAS  PubMed  Google Scholar 

  122. Ayorinde F, Gelain SV, Johnson J, Wan LW. Analysis of some commercial polysorbate formulations using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2000;14(22):2116–24.

    Article  CAS  PubMed  Google Scholar 

  123. Brandner JD. The composition of NF-defined emulsifiers: sorbitan monolaurate, monopalmitate, monostearate, monooleate, polysorbate 20, polysorbate 40, polysorbate 60, and polysorbate 80. Drug Dev Ind Pharm. 1998;24(11):1049–54.

    Article  CAS  PubMed  Google Scholar 

  124. Kerwin BA. Polysorbates 20 and 80 used in the formulation of protein biotherapeutics: structure and degradation pathways. J Pharm Sci. 2008;97(8):2924–35.

    Article  CAS  PubMed  Google Scholar 

  125. Cory WC, Harris C, Martinez S. Accelerated degradation of ibuprofen in tablets. Pharm Dev Technol. 2010;15(6):636–43.

    Article  PubMed  CAS  Google Scholar 

  126. Christiansen A, Backensfeld T, Kühn S, Weitschies W. Stability of the non-ionic surfactant polysorbate 80 investigated by HPLC-MS and charged aerosol detector. Pharm- Int J Pharm Sci. 2011;66(9):666–71.

    CAS  Google Scholar 

  127. Milanović M, Krstonošić V, Dokić L, Hadnađev M, Dapčević HT. Insight into the interaction between Carbopol® 940 and ionic/nonionic surfactant. J Surfactant Deterg. 2015;18(3):505–16.

    Article  CAS  Google Scholar 

  128. Moore F, Okelo G, Colón I, Kushner J. Improving the hardness of dry granulated tablets containing sodium lauryl sulfate. Int J Pharm. 2010;400(1–2):37–41.

    Article  CAS  PubMed  Google Scholar 

  129. Zhao F, Malayev V, Rao V, Hussain M. Effect of sodium lauryl sulfate in dissolution media on dissolution of hard gelatin capsule shells. Pharm Res. 2004;21(1):144–8.

    Article  CAS  PubMed  Google Scholar 

  130. Nema S, Washkuhn RJ, Brendel RJ. Excipients and their use in injectable products. J Pharm Sci Technol. 1997;51:166–71.

    CAS  Google Scholar 

  131. Wang W, John Wang Y, Wang DQ. Dual effects of tween 80 on protein stability. Int J Pharm. 2008;347:31–8.

    Article  CAS  PubMed  Google Scholar 

  132. de Carvalho LAEB, Marques MPM, Tomkinson J. Drug-excipient interactions in ketoprofen: a vibrational spectroscopy study. Biopolymers. 2006;82(4):420–4.

    Article  CAS  Google Scholar 

  133. Mengele EA, Kartasheva ZS, Plashchina IG, Kasaikina OT. Specific features of lecithin oxidation in organic solvents. Colloid J. 2008;70(6):753–8.

    Article  CAS  Google Scholar 

  134. Haj-Ahmad RR, Elkordy AA, Chaw CS, Moore A. Compare and contrast the effects of surfactants (Pluronic®F-127 and Cremophor®EL) and sugars (β-cyclodextrin and inulin) on properties of spray dried and crystallised lysozyme. Eur J Pharm Sci. 2013;49(4):519–34.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Narasimha Murthy.

Additional information

Responsible editor: S.Narasimha Murthy and Michael A. Repka

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darji, M.A., Lalge, R.M., Marathe, S.P. et al. Excipient Stability in Oral Solid Dosage Forms: A Review. AAPS PharmSciTech 19, 12–26 (2018). https://doi.org/10.1208/s12249-017-0864-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-017-0864-4

Keywords

Navigation