Skip to main content
Log in

Fc-Fusion Drugs Have FcγR/C1q Binding and Signaling Properties That May Affect Their Immunogenicity

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Fusing the human immunoglobulin G1 (IgG1) constant region (Fc-domain) to therapeutic proteins or peptides increases their circulating plasma half-life via neonatal Fc receptor (FcRn) binding and recycling. However, Fc-mediated interactions with other molecules including complement C1q and Fc gamma receptors (FcγRs) can have immunological consequences and the potential to modulate the immunogenicity of Fc-fusion therapeutics. In a comparative study, we carried out a comprehensive assessment of Fc-mediated interactions for five FDA-approved Fc-fusion therapeutics. C1q binding and complement activation were measured by ELISA, while FcγR binding and signaling were evaluated using BW5147:FcγR-ζ reporter cell lines. We demonstrate that FIX-Fc and FVIII-Fc bound C1q as well as activating and inhibitory FcγRs (I, IIA, IIB, IIIA). These coagulation factor Fc-fusions also signaled via FcγRIIIA, and to a lesser extent via FcγRI and FcγRIIB. TNFR-Fc and CTLA4-Fc bound FcγRI, while TNFR-Fc also bound FcγRIIIA, but these interactions did not result in FcγR signaling. Our comprehensive assessment demonstrates that (i) different Fc-fusion drugs have distinct C1q/FcγR binding and signaling properties, (ii) FcγR binding does not predict signaling, and (iii) the fusion partner (effector molecule) can influence Fc-mediated interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Beck A, Reichert JM. Therapeutic Fc-fusion proteins and peptides as successful alternatives to antibodies. MAbs. 2011;3:415–6.

    Article  Google Scholar 

  2. Rath T, Baker K, Dumont JA, Peters RT, Jiang H, Qiao SW, et al. Fc-fusion proteins and FcRn: structural insights for longer-lasting and more effective therapeutics. Crit Rev Biotechnol. 2015;35:235–54.

    Article  CAS  Google Scholar 

  3. Ning L, He B, Zhou P, Derda R, Huang J. Molecular design of peptide-Fc fusion drugs. Curr Drug Metab. 2019;20:203–8.

    Article  CAS  Google Scholar 

  4. Ning L, Li Z, Bai Z, Hou S, He B, Huang J, et al. Computational design of antiangiogenic peptibody by fusing human IgG1 Fc fragment and HRH peptide: structural modeling, energetic analysis, and dynamics simulation of its binding potency to VEGF receptor. Int J Biol Sci. 2018;14:930–7.

    Article  CAS  Google Scholar 

  5. Wu Z, Zhou P, Li X, Wang H, Luo D, Qiao H, et al. Structural characterization of a recombinant fusion protein by instrumental analysis and molecular modeling. PLoS One. 2013;8:e57642.

    Article  CAS  Google Scholar 

  6. Sauna ZE, Pandey GS, Jain N, Mahmood I, Kimchi-Sarfaty C, Golding B. Plasma derivatives: new products and new approaches. Biologicals. 2012;40:191–5.

    Article  CAS  Google Scholar 

  7. Roopenian DC, Akilesh S. FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol. 2007;7:715–25.

    Article  CAS  Google Scholar 

  8. Pyzik M, Rath T, Kuo TT, Win S, Baker K, Hubbard JJ, et al. Hepatic FcRn regulates albumin homeostasis and susceptibility to liver injury. Proc Natl Acad Sci U S A. 2017;114:E2862–71.

    Article  CAS  Google Scholar 

  9. Nimmerjahn F, Ravetch JV. Fcgamma receptors as regulators of immune responses. Nat Rev Immunol. 2008;8:34–47.

    Article  CAS  Google Scholar 

  10. Ehrnthaller C, Ignatius A, Gebhard F, Huber-Lang M. New insights of an old defense system: structure, function, and clinical relevance of the complement system. Mol Med. 2011;17:317–29.

    Article  CAS  Google Scholar 

  11. Levin D, Golding B, Strome SE, Sauna ZE. Fc fusion as a platform technology: potential for modulating immunogenicity. Trends Biotechnol. 2015;33:27–34.

    Article  CAS  Google Scholar 

  12. Corrales-Aguilar E, Trilling M, Reinhard H, Merce-Maldonado E, Widera M, Schaal H, et al. A novel assay for detecting virus-specific antibodies triggering activation of Fcgamma receptors. J Immunol Methods. 2013;387:21–35.

    Article  CAS  Google Scholar 

  13. Osslund TDC, C.L, Crampton SL, Bass RB. Crystals of etanercept and methods of making thereof. US Patent 2007, US 7,276,477 B2.

  14. Davis PM, Abraham R, Xu L, Nadler SG, Suchard SJ. Abatacept binds to the Fc receptor CD64 but does not mediate complement-dependent cytotoxicity or antibody-dependent cellular cytotoxicity. J Rheumatol. 2007;34:2204–10.

    CAS  PubMed  Google Scholar 

  15. Pierce GTS, Peters RT, Jiang H. Factor ix polypeptides and methods of use thereof US Patent 2012, US 9,670,475 B2.

  16. Peters RT, Toby G, Lu Q, Liu T, Kulman JD, Low SC, et al. Biochemical and functional characterization of a recombinant monomeric factor VIII-Fc fusion protein. J Thromb Haemost. 2013;11:132–41.

    Article  CAS  Google Scholar 

  17. Dumont JALS, Bitonti AJ, Pierce G, Luk A, Jiang H, McKinney B, Ottmer M, Sommer J, Nugent K, Li L, Peters R. Factor VIII-Fc chimeric and hybrid polypeptides, and methods of use thereof. US Patent 2015, US 9,050,318 B2.

  18. Mossner E, Brunker P, Moser S, Puntener U, Schmidt C, Herter S, et al. Increasing the efficacy of CD20 antibody therapy through the engineering of a new type II anti-CD20 antibody with enhanced direct and immune effector cell-mediated B-cell cytotoxicity. Blood. 2010;115:4393–402.

    Article  CAS  Google Scholar 

  19. Bournazos S, Ravetch JV. Diversification of IgG effector functions. Int Immunol. 2017;29:303–10.

    Article  CAS  Google Scholar 

  20. Lee CH, Romain G, Yan W, Watanabe M, Charab W, Todorova B, et al. IgG Fc domains that bind C1q but not effector Fcgamma receptors delineate the importance of complement-mediated effector functions. Nat Immunol. 2017;18:889–98.

    Article  CAS  Google Scholar 

  21. Ellis EF, Henney CS. Adverse reactions following administration of human gamma globulin. J Allergy. 1969;43:45–54.

    Article  CAS  Google Scholar 

  22. Rosenberg AS. Effects of protein aggregates: an immunologic perspective. AAPS J. 2006;8:E501–7.

    Article  Google Scholar 

  23. Nimmerjahn F, Gordan S, Lux A. FcgammaR dependent mechanisms of cytotoxic, agonistic, and neutralizing antibody activities. Trends Immunol. 2015;36:325–36.

    Article  CAS  Google Scholar 

  24. Corrales-Aguilar E, Trilling M, Reinhard H, Falcone V, Zimmermann A, Adams O, et al. Highly individual patterns of virus-immune IgG effector responses in humans. Med Microbiol Immunol. 2016;205:409–24.

    Article  CAS  Google Scholar 

  25. Guilliams M, Bruhns P, Saeys Y, Hammad H, Lambrecht BN. The function of Fcgamma receptors in dendritic cells and macrophages. Nat Rev Immunol. 2014;14:94–108.

    Article  CAS  Google Scholar 

  26. Xiang Z, Cutler AJ, Brownlie RJ, Fairfax K, Lawlor KE, Severinson E, et al. FcgammaRIIb controls bone marrow plasma cell persistence and apoptosis. Nat Immunol. 2007;8:419–29.

    Article  CAS  Google Scholar 

  27. Smith KG, Clatworthy MR. FcgammaRIIB in autoimmunity and infection: evolutionary and therapeutic implications. Nat Rev Immunol. 2010;10:328–43.

    Article  CAS  Google Scholar 

  28. Levin D, Lagasse HA, Burch E, Strome S, Tan S, Jiang H, et al. Modulating immunogenicity of factor IX by fusion to an immunoglobulin Fc domain: a study using a hemophilia B mouse model. J Thromb Haemost. 2017;15:721–34.

    Article  CAS  Google Scholar 

  29. Franchini M, Lippi G, Montagnana M, Targher G, Zaffanello M, Salvagno GL, et al. Anaphylaxis in patients with congenital bleeding disorders and inhibitors. Blood Coagul Fibrinolysis. 2009;20:225–9.

    Article  CAS  Google Scholar 

  30. Strand V, Balsa A, Al-Saleh J, Barile-Fabris L, Horiuchi T, Takeuchi T, et al. Immunogenicity of biologics in chronic inflammatory diseases: a systematic review. BioDrugs. 2017;31:299–316.

    Article  CAS  Google Scholar 

  31. Mancuso ME, Santagostino E. Outcome of clinical trials with new extended half-life FVIII/IX concentrates. J Clin Med. 2017;6:39.

    Article  Google Scholar 

  32. Mahlangu J, Powell JS, Ragni MV, Chowdary P, Josephson NC, Pabinger I, et al. Phase 3 study of recombinant factor VIII Fc fusion protein in severe hemophilia A. Blood. 2014;123:317–25.

    Article  CAS  Google Scholar 

  33. Powell JS, Pasi KJ, Ragni MV, Ozelo MC, Valentino LA, Mahlangu JN, et al. Phase 3 study of recombinant factor IX Fc fusion protein in hemophilia B. N Engl J Med. 2013;369:2313–23.

    Article  CAS  Google Scholar 

  34. Kis-Toth K, Rajani GM, Simpson A, Henry KL, Dumont J, Peters RT, et al. Recombinant factor VIII Fc fusion protein drives regulatory macrophage polarization. Blood Adv. 2018;2:2904–16.

    Article  Google Scholar 

  35. Wang W, Lu P, Fang Y, Hamuro L, Pittman T, Carr B, et al. Monoclonal antibodies with identical Fc sequences can bind to FcRn differentially with pharmacokinetic consequences. Drug Metab Dispos. 2011;39:1469–77.

    Article  CAS  Google Scholar 

  36. Piche-Nicholas NM, Avery LB, King AC, Kavosi M, Wang M, O'Hara DM, et al. Changes in complementarity-determining regions significantly alter IgG binding to the neonatal Fc receptor (FcRn) and pharmacokinetics. MAbs. 2018;10:81–94.

    Article  CAS  Google Scholar 

  37. Peters RT, Low SC, Kamphaus GD, Dumont JA, Amari JV, Lu Q, et al. Prolonged activity of factor IX as a monomeric fc fusion protein. Blood. 2010;115:2057–64.

    Article  CAS  Google Scholar 

  38. Dumont JA, Liu T, Low SC, Zhang X, Kamphaus G, Sakorafas P, et al. Prolonged activity of a recombinant factor VIII-Fc fusion protein in hemophilia a mice and dogs. Blood. 2012;119:3024–30.

    Article  CAS  Google Scholar 

  39. Suzuki T, Ishii-Watabe A, Tada M, Kobayashi T, Kanayasu-Toyoda T, Kawanishi T, et al. Importance of neonatal FcR in regulating the serum half-life of therapeutic proteins containing the Fc domain of human IgG1: a comparative study of the affinity of monoclonal antibodies and Fc-fusion proteins to human neonatal FcR. J Immunol. 2010;184:1968–76.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

B.G. and Z.E.S. are funded by intramural grants from the US FDA. We thank Biogen for providing the coagulation factor Fc-fusions (FIX-Fc [efmoroctocog alfa] and FVIII-Fc [eftrenonacog alfa]) through a Material Transfer Agreement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuben E. Sauna.

Ethics declarations

Disclaimer

My comments are an informal communication and represent my own best judgment. These comments do not bind or obligate FDA.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lagassé, H.A.D., Hengel, H., Golding, B. et al. Fc-Fusion Drugs Have FcγR/C1q Binding and Signaling Properties That May Affect Their Immunogenicity. AAPS J 21, 62 (2019). https://doi.org/10.1208/s12248-019-0336-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-019-0336-8

Keywords

Navigation